## Yuan-Hsiang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7656886/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Morphological evolution of nanosheets-stacked spherical ZnO for preparation of GO-Zn/ZnO ternary nanocomposite: A novel electrochemical platform for nanomolar detection of antihistamine promethazine hydrochloride. Journal of Alloys and Compounds, 2022, 890, 161768. | 5.5 | 15        |
| 2  | Electron transfer dynamics and enhanced H2 production activity of hydrangea-like BiOBr/Bi2S3-based photocatalysts with Cu-complex as a redox mediator. Applied Surface Science, 2022, 576, 151870.                                                                        | 6.1 | 14        |
| 3  | A multifunctional ligand for defect passivation of perovskite film realizes air-stable perovskite solar cells with efficiencies exceeding 20%. Sustainable Energy and Fuels, 2022, 6, 1950-1958.                                                                          | 4.9 | 6         |
| 4  | Flexible epoxy graphene thermoset with excellent weather and corrosion resistance. Progress in Organic Coatings, 2021, 151, 106052.                                                                                                                                       | 3.9 | 7         |
| 5  | Enhancing charge transport performance of perovskite solar cells by using reduced graphene oxide-cysteine/nanogold hybrid material in the active layer. FlatChem, 2021, 28, 100254.                                                                                       | 5.6 | 12        |
| 6  | A frontier Zn- and N-rich complex grafted onto reduced graphene oxide for the electrocatalysis of dye-sensitized solar cells. Dalton Transactions, 2020, 49, 9035-9047.                                                                                                   | 3.3 | 4         |
| 7  | Sonochemical synthesis of iron-graphene oxide/honeycomb-like ZnO ternary nanohybrids for sensitive electrochemical detection of antipsychotic drug chlorpromazine. Ultrasonics Sonochemistry, 2019, 59, 104696.                                                           | 8.2 | 37        |
| 8  | A study of novel macrocyclic copper complex/grapheneâ€based composite materials for counter<br>electrodes of dyeâ€sensitized solar cells. Journal of the Chinese Chemical Society, 2019, 66, 996-1007.                                                                    | 1.4 | 5         |
| 9  | Synthesis of reduced graphene oxide/macrocyclic ytterbium complex nanocomposites and their application in the counter electrodes of dye-sensitized solar cells. Organic Electronics, 2019, 64, 166-175.                                                                   | 2.6 | 14        |
| 10 | Fabrication of reduced graphene oxide/macrocyclic cobalt complex nanocomposites as counter electrodes for Pt-free dye-sensitized solar cells. Applied Surface Science, 2018, 434, 412-422.                                                                                | 6.1 | 32        |
| 11 | Preparation of reduced graphene oxide/macrocyclic manganese complex composite materials as counter electrodes in dye-sensitized solar cells. Organic Electronics, 2018, 52, 51-60.                                                                                        | 2.6 | 25        |
| 12 | Enhanced Corrosion Protection of Iron by Poly(3-hexylthiophene)/Poly(styrene-co-hydroxystyrene)<br>Blends. Coatings, 2018, 8, 383.                                                                                                                                        | 2.6 | 5         |
| 13 | Reduced graphene oxide/macrocyclic iron complex hybrid materials as counter electrodes for dye-sensitized solar cells. Journal of Colloid and Interface Science, 2017, 495, 111-121.                                                                                      | 9.4 | 31        |
| 14 | Covalent bond–grafted soluble poly(o-methoxyaniline)-graphene oxide composite materials fabricated<br>as counter electrodes of dye-sensitised solar cells. Organic Electronics, 2017, 42, 209-220.                                                                        | 2.6 | 20        |
| 15 | Poly(o-methoxyaniline) doped with an organic acid as cost-efficient counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2016, 213, 791-801.                                                                                                           | 5.2 | 24        |
| 16 | High-efficiency counter electrodes using graphene hybrid with a macrocyclic nickel complex for dye-sensitized solar cells. Organic Electronics, 2016, 31, 207-216.                                                                                                        | 2.6 | 26        |
| 17 | High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polymer Chemistry, 2014, 5, 535-550.                                                                                                                                 | 3.9 | 384       |
| 18 | Biocompatible electrospinning poly(vinyl alcohol) nanofibres embedded with graphene-based<br>derivatives with enhanced conductivity, mechanical strength and thermal stability. RSC Advances,<br>2014, 4, 56373-56384.                                                    | 3.6 | 26        |

Yuan-Hsiang Yu

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Non-catalytic and substrate-free method to titania-doped W18O49 nanorods: growth,<br>characterizations, and electro-optical properties. Journal of Nanoparticle Research, 2012, 14, 1.                                                                                       | 1.9 | 5         |
| 20 | Compatibility Enhancement of Polyimide–Silica Hybrid Sol–Gel Materials Without Incorporation of<br>Silane-Coupling Agent. Journal of Nanoscience and Nanotechnology, 2011, 11, 3454-3463.                                                                                    | 0.9 | 0         |
| 21 | Electrochemical corrosion protection studies of aniline-capped aniline trimer-based electroactive polyurethane coatings. Electrochimica Acta, 2011, 58, 614-620.                                                                                                             | 5.2 | 44        |
| 22 | Effect of methyl substituents on the N-diaryl rings of anthracene-9,10-diamine derivatives for OLEDs applications. Organic Electronics, 2011, 12, 694-702.                                                                                                                   | 2.6 | 30        |
| 23 | Preparation and anticorrosive properties of hybrid coatings based on epoxyâ€silica hybrid materials.<br>Journal of Applied Polymer Science, 2009, 112, 1933-1942.                                                                                                            | 2.6 | 32        |
| 24 | Electrochemical studies for the electroactivity of amine-capped aniline trimer on the anticorrosion effect of as-prepared polyimide coatings. European Polymer Journal, 2009, 45, 485-493.                                                                                   | 5.4 | 72        |
| 25 | Comparative Electrochemical Studies at Different Operational Temperatures for the Effect of<br>Nanoclay Platelets on the Anticorrosion Efficiency of Organo-Soluble Polyimide/Clay Nanocomposite<br>Coatings. Journal of Nanoscience and Nanotechnology, 2009, 9, 3125-3133. | 0.9 | 5         |
| 26 | Effect of clay on the corrosion protection efficiency of PMMA/Na+-MMT clay nanocomposite coatings evaluated by electrochemical measurements. European Polymer Journal, 2008, 44, 13-23.                                                                                      | 5.4 | 60        |
| 27 | Effect of Amino-Modified Silica Nanoparticles on the Corrosion Protection Properties of Epoxy<br>Resin-Silica Hybrid Materials. Journal of Nanoscience and Nanotechnology, 2008, 8, 3040-3049.                                                                               | 0.9 | 34        |
| 28 | Siloxane-modified epoxy resin–clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surface and Coatings Technology, 2006, 200, 2753-2763.                                                                          | 4.8 | 188       |
| 29 | Durable electrochromic coatings prepared from electronically conductive poly(3HT-co-3TPP)-silica hybrid materials. Journal of Electronic Materials, 2006, 35, 1571-1580.                                                                                                     | 2.2 | 17        |
| 30 | Effect of organoclay on the thermal stability, mechanical strength, and surface wettability of<br>injection-molded ABS-clay nanocomposite materials prepared by melt intercalation. Journal of Applied<br>Polymer Science, 2006, 99, 1576-1582.                              | 2.6 | 50        |
| 31 | Poly(N-vinylcarbazole)-clay nanocomposite materials prepared by photoinitiated polymerization with triarylsulfonium salt initiator. Journal of Applied Polymer Science, 2004, 91, 1904-1912.                                                                                 | 2.6 | 16        |
| 32 | Enhanced corrosion prevention effect of polysulfone-clay nanocomposite materials prepared by solution dispersion. Journal of Applied Polymer Science, 2004, 92, 631-637.                                                                                                     | 2.6 | 51        |
| 33 | Effective enhancement of anticorrosive properties of polystyrene by polystyrene-clay nanocomposite materials. Journal of Applied Polymer Science, 2004, 92, 1970-1976.                                                                                                       | 2.6 | 58        |
| 34 | Preparation and properties of (BATB-ODPA) polyimide-clay nanocomposite materials. Journal of Applied<br>Polymer Science, 2004, 92, 1072-1079.                                                                                                                                | 2.6 | 43        |
| 35 | Preparation and properties of heterocyclically conjugated poly(3-hexylthiophene)-clay nanocomposite materials. Journal of Applied Polymer Science, 2004, 91, 3438-3446.                                                                                                      | 2.6 | 43        |
| 36 | Preparation and properties of polyimide-clay nanocomposite materials for anticorrosion application.<br>Journal of Applied Polymer Science, 2004, 92, 3573-3582.                                                                                                              | 2.6 | 78        |

Yuan-Hsiang Yu

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thermal and optical properties of PMMA-titania hybrid materials prepared by sol-gel approach with HEMA as coupling agent. Journal of Applied Polymer Science, 2004, 94, 400-405.                                                   | 2.6 | 51        |
| 38 | Comparative studies of the properties of poly(methyl methacrylate)-clay nanocomposite materials<br>prepared byin situ emulsion polymerization and solution dispersion. Journal of Applied Polymer<br>Science, 2004, 94, 1936-1946. | 2.6 | 102       |
| 39 | Organo-soluble polyimide (TBAPP–OPDA)/clay nanocomposite materials with advanced anticorrosive properties prepared from solution dispersion technique. Acta Materialia, 2004, 52, 475-486.                                         | 7.9 | 98        |
| 40 | 19.2: Spray-Coating Process for Preparing CNT-FED Cathode. Digest of Technical Papers SID<br>International Symposium, 2004, 35, 825.                                                                                               | 0.3 | 0         |
| 41 | Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materials. Polymer, 2003, 44, 3553-3560.                                                                                                                      | 3.8 | 288       |
| 42 | Syntheses of Ruthenium(II) Quinonediimine Complexes of Cyclam and Characterization of Their DNA-Binding Activities and Cytotoxicity. Inorganic Chemistry, 2002, 41, 3161-3171.                                                     | 4.0 | 104       |
| 43 | Chemical Transformations of<br>(2,3,9,10-Tetramethyl-1,4,5,7,8,11,12,14-Octa-Azacyclotetradeca-1,3,8,10-Tetraenato)Cobalt(II)Perchlorate.<br>Journal of the Chinese Chemical Society, 1996, 43, 261-276.                           | 1.4 | 5         |