List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7656864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling schizophrenia using human induced pluripotent stem cells. Nature, 2011, 473, 221-225.	13.7	1,206
2	Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 2016, 19, 1442-1453.	7.1	952
3	Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 2016, 22, 1101-1107.	15.2	581
4	Mosaic Copy Number Variation in Human Neurons. Science, 2013, 342, 632-637.	6.0	488
5	Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 2015, 527, 95-99.	13.7	461
6	Reprogramming of Pancreatic β Cells into Induced Pluripotent Stem Cells. Current Biology, 2008, 18, 890-894.	1.8	379
7	Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Molecular Psychiatry, 2015, 20, 361-368.	4.1	358
8	Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry, 2017, 22, 820-835.	4.1	349
9	An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 9, 600-614.	2.3	298
10	Modeling Hippocampal Neurogenesis Using Human Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 295-310.	2.3	231
11	A Role for Noncoding Variation in Schizophrenia. Cell Reports, 2014, 9, 1417-1429.	2.9	225
12	Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease. Genome Medicine, 2016, 8, 104.	3.6	224
13	High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain. Cell Stem Cell, 2017, 21, 274-283.e5.	5.2	214
14	A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nature Neuroscience, 2020, 23, 583-593.	7.1	194
15	All Î ² Cells Contribute Equally to Islet Growth and Maintenance. PLoS Biology, 2007, 5, e163.	2.6	191
16	Synergistic effects of common schizophrenia risk variants. Nature Genetics, 2019, 51, 1475-1485.	9.4	184
17	Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Human Molecular Genetics, 2011, 20, R109-R115.	1.4	165
18	Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science, 2018, 362, .	6.0	162

#	Article	IF	CITATIONS
19	Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nature Communications, 2017, 8, 2225.	5.8	143
20	Cerebral organoids reveal early cortical maldevelopment in schizophrenia—computational anatomy and genomics, role of FGFR1. Translational Psychiatry, 2017, 7, 6.	2.4	140
21	Molecular subtyping of Alzheimer's disease using RNA sequencing data reveals novel mechanisms and targets. Science Advances, 2021, 7, .	4.7	137
22	Investigating synapse formation and function using human pluripotent stem cell-derived neurons. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3005-3010.	3.3	133
23	The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nature Genetics, 2017, 49, 1239-1250.	9.4	133
24	Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS. American Journal of Human Genetics, 2018, 102, 1169-1184.	2.6	128
25	Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12469-12473.	3.3	127
26	Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods, 2016, 101, 113-124.	1.9	121
27	Modeling psychiatric disorders at the cellular and network levels. Molecular Psychiatry, 2012, 17, 1239-1253.	4.1	108
28	Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease. Neuron, 2021, 109, 257-272.e14.	3.8	108
29	Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells. Cell Reports, 2016, 15, 1024-1036.	2.9	107
30	Rapid Cellular Turnover in Adipose Tissue. PLoS ONE, 2011, 6, e17637.	1.1	105
31	Roles of Heat Shock Factor 1 in Neuronal Response to Fetal Environmental Risks and Its Relevance to Brain Disorders. Neuron, 2014, 82, 560-572.	3.8	103
32	A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Molecular Psychiatry, 2020, 25, 2712-2727.	4.1	100
33	Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron, 2020, 106, 912-926.e5.	3.8	98
34	Human iPSC Neurons Display Activity-Dependent Neurotransmitter Secretion: Aberrant Catecholamine Levels in Schizophrenia Neurons. Stem Cell Reports, 2014, 3, 531-538.	2.3	97
35	Neuronal impact of patient-specific aberrant NRXN1α splicing. Nature Genetics, 2019, 51, 1679-1690.	9.4	91
36	Chronotype and cellular circadian rhythms predict the clinical response to lithium maintenance treatment in patients with bipolar disorder. Neuropsychopharmacology, 2019, 44, 620-628.	2.8	80

#	Article	IF	CITATIONS
37	Altered WNT Signaling in Human Induced Pluripotent Stem Cell Neural Progenitor Cells Derived from Four Schizophrenia Patients. Biological Psychiatry, 2015, 78, e29-e34.	0.7	77
38	Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes. Stem Cell Reports, 2017, 9, 615-628.	2.3	76
39	In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics and Chromatin, 2017, 10, 4.	1.8	74
40	Concise Review: The Promise of Human Induced Pluripotent Stem Cell-Based Studies of Schizophrenia. Stem Cells, 2011, 29, 1915-1922.	1.4	73
41	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	2.3	72
42	MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Molecular Psychiatry, 2018, 23, 123-132.	4.1	70
43	Brief Report: Efficient Generation of Hematopoietic Precursors and Progenitors from Human Pluripotent Stem Cell Lines. Stem Cells, 2011, 29, 1158-1164.	1.4	69
44	Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease. Molecular Psychiatry, 2015, 20, 677-684.	4.1	69
45	Spatial genome organization and cognition. Nature Reviews Neuroscience, 2016, 17, 681-691.	4.9	69
46	New considerations for hiPSC-based models of neuropsychiatric disorders. Molecular Psychiatry, 2019, 24, 49-66.	4.1	64
47	Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nature Communications, 2018, 9, 4412.	5.8	63
48	Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia. Nature Neuroscience, 2019, 22, 1402-1412.	7.1	63
49	High-Efficient Generation of Induced Pluripotent Stem Cells from Human Astrocytes. PLoS ONE, 2010, 5, e15526.	1.1	61
50	The Pharmacogenomics of Bipolar Disorder study (PGBD): identification of genes for lithium response in a prospective sample. BMC Psychiatry, 2016, 16, 129.	1.1	61
51	GJA1 (connexin43) is a key regulator of Alzheimer's disease pathogenesis. Acta Neuropathologica Communications, 2018, 6, 144.	2.4	59
52	Modeling psychiatric disorders through reprogramming. DMM Disease Models and Mechanisms, 2012, 5, 26-32.	1.2	58
53	Common developmental genome deprogramming in schizophrenia — Role of Integrative Nuclear FGFR1 Signaling (INFS). Schizophrenia Research, 2017, 185, 17-32.	1.1	57
54	Modeling Heterogeneous Patients With a Clinical Diagnosis of Schizophrenia With Induced Pluripotent Stem Cells. Biological Psychiatry, 2014, 75, 936-944.	0.7	53

#	Article	IF	CITATIONS
55	Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. NPJ Schizophrenia, 2015, 1, .	2.0	52
56	Increased abundance of translation machinery in stem cell–derived neural progenitor cells from four schizophrenia patients. Translational Psychiatry, 2015, 5, e662-e662.	2.4	48
57	A Guide to Generating and Using hiPSC Derived NPCs for the Study of Neurological Diseases. Journal of Visualized Experiments, 2015, , e52495.	0.2	46
58	Type I interferon response impairs differentiation potential of pluripotent stem cells. Proceedings of the United States of America, 2019, 116, 1384-1393.	3.3	44
59	Activity-Dependent Changes in Gene Expression in Schizophrenia Human-Induced Pluripotent Stem Cell Neurons. JAMA Psychiatry, 2016, 73, 1180.	6.0	40
60	Massively parallel techniques for cataloguing the regulome of the human brain. Nature Neuroscience, 2020, 23, 1509-1521.	7.1	39
61	Common Genetic Variation in Humans Impacts InÂVitro Susceptibility to SARS-CoV-2 Infection. Stem Cell Reports, 2021, 16, 505-518.	2.3	39
62	Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-based schizophrenia models. Molecular Psychiatry, 2018, 23, 271-281.	4.1	37
63	Neural organoids for disease phenotyping, drug screening and developmental biology studies. Neurochemistry International, 2017, 106, 85-93.	1.9	36
64	THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Translational Psychiatry, 2018, 8, 89.	2.4	35
65	Modeling the complex genetic architectures of brain disease. Nature Genetics, 2020, 52, 363-369.	9.4	35
66	Evolving toward a human-cell based and multiscale approach to drug discovery for CNS disorders. Frontiers in Pharmacology, 2014, 5, 252.	1.6	34
67	Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ Schizophrenia, 2017, 3, 35.	2.0	34
68	Mapping regulatory variants in hiPSC models. Nature Genetics, 2018, 50, 1-2.	9.4	33
69	Functional annotation of rare structural variation in the human brain. Nature Communications, 2020, 11, 2990.	5.8	32
70	ASCL1- and DLX2-induced GABAergic neurons from hiPSC-derived NPCs. Journal of Neuroscience Methods, 2020, 334, 108548.	1.3	30
71	Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies. Molecular Psychiatry, 2021, 26, 3383-3394.	4.1	29
72	Slow and steady is the key to β ell replication. Journal of Cellular and Molecular Medicine, 2009, 13, 472-487.	1.6	28

#	Article	IF	CITATIONS
73	The Importance of Non-neuronal Cell Types in hiPSC-Based Disease Modeling and Drug Screening. Frontiers in Cell and Developmental Biology, 2017, 5, 117.	1.8	27
74	Differential transcriptional response following glucocorticoid activation in cultured blood immune cells: a novel approach to PTSD biomarker development. Translational Psychiatry, 2019, 9, 201.	2.4	27
75	Neural stem and progenitor cells in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 701-715.	6.6	26
76	Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Human Mutation, 2018, 39, 939-946.	1.1	26
77	Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Molecular and Cellular Neurosciences, 2017, 82, 157-166.	1.0	25
78	Modeling Schizophrenia Using Induced Pluripotent Stem Cell–Derived and Fibroblast-Induced Neurons. Schizophrenia Bulletin, 2013, 39, 4-10.	2.3	24
79	From "Directed Differentiation―to "Neuronal Induction― Modeling Neuropsychiatric Disease. Biomarker Insights, 2015, 10s1, BMI.S20066.	1.0	24
80	Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism. Molecular Autism, 2020, 11, 53.	2.6	24
81	Induced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective. Biological Psychiatry, 2021, 90, 362-372.	0.7	23
82	Prenatal Δ9-Tetrahydrocannabinol Exposure in Males Leads to Motivational Disturbances Related to Striatal Epigenetic Dysregulation. Biological Psychiatry, 2022, 92, 127-138.	0.7	22
83	Dopaminergic differentiation of schizophrenia hiPSCs. Molecular Psychiatry, 2015, 20, 549-550.	4.1	20
84	Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiology of Disease, 2019, 132, 104562.	2.1	20
85	Variations in brain defects result from cellular mosaicism in the activation of heat shock signalling. Nature Communications, 2017, 8, 15157.	5.8	19
86	Prospects for Modeling Abnormal Neuronal Function in Schizophrenia Using Human Induced Pluripotent Stem Cells. Frontiers in Cellular Neuroscience, 2017, 11, 360.	1.8	18
87	Publicly Available hiPSC Lines with Extreme Polygenic Risk Scores for Modeling Schizophrenia. Complex Psychiatry, 2020, 6, 68-82.	1.3	18
88	A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning. Cell Reports, 2022, 38, 110282.	2.9	17
89	Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Research, 2017, 1655, 283-293.	1.1	16
90	Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Frontiers in Pediatrics, 2018, 6, 82.	0.9	16

#	Article	IF	CITATIONS
91	Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	15
92	Inducing Cellular Aging: Enabling Neurodegeneration-in-a-Dish. Cell Stem Cell, 2013, 13, 635-636.	5.2	13
93	Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems. Journal of Neuroscience, 2020, 40, 1176-1185.	1.7	13
94	Applying stem cells and CRISPR engineering to uncover the etiology of schizophrenia. Current Opinion in Neurobiology, 2021, 69, 193-201.	2.0	13
95	Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Molecular Psychiatry, 2023, 28, 1970-1982.	4.1	13
96	Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia. Nature Communications, 2022, 13, 2195.	5.8	13
97	Spatial genome exploration in the context of cognitive and neurological disease. Current Opinion in Neurobiology, 2019, 59, 112-119.	2.0	12
98	Divergent Levels of Marker Chromosomes in an hiPSC-Based Model ofÂPsychosis. Stem Cell Reports, 2017, 8, 519-528.	2.3	11
99	Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. Advances in Neurobiology, 2020, 25, 155-206.	1.3	11
100	CRISPR-based functional evaluation of schizophrenia risk variants. Schizophrenia Research, 2020, 217, 26-36.	1.1	10
101	Entrainment of Circadian Rhythms to Temperature Reveals Amplitude Deficits in Fibroblasts from Patients with Bipolar Disorder and Possible Links to Calcium Channels. Molecular Neuropsychiatry, 2019, 5, 115-124.	3.0	9
102	Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Molecular and Cellular Neurosciences, 2020, 107, 103532.	1.0	8
103	Parsing the Functional Impact of Noncoding Genetic Variants in the Brain Epigenome. Biological Psychiatry, 2021, 89, 65-75.	0.7	8
104	Analysis framework and experimental design for evaluating synergy-driving gene expression. Nature Protocols, 2021, 16, 812-840.	5.5	8
105	Using Stem Cell Models to Explore the Genetics Underlying Psychiatric Disorders: Linking Risk Variants, Genes, and Biology in Brain Disease. American Journal of Psychiatry, 2022, 179, 322-328.	4.0	7
106	THC Treatment Alters Glutamate Receptor Gene Expression in Human Stem Cell-Derived Neurons. Molecular Neuropsychiatry, 2017, 3, 73-84.	3.0	5
107	Personalized medicine in a dish: the growing possibility of neuropsychiatric disease drug discovery tailored to patient genetic variants using stem cells. Stem Cell Investigation, 2017, 4, 91-91.	1.3	5
108	Cell Type-Specific In Vitro Gene Expression Profiling of Stem Cell-Derived Neural Models. Cells, 2020, 9, 1406.	1.8	5

#	Article	IF	CITATIONS
109	Transcriptional and Translational Dynamics of Zika and Dengue Virus Infection. Viruses, 2022, 14, 1418.	1.5	5
110	Using the dCas9-KRAB system to repress gene expression in hiPSC-derived NGN2 neurons. STAR Protocols, 2021, 2, 100580.	0.5	4
111	Neural Induction of Embryonic Stem/Induced Pluripotent Stem Cells. , 2013, , 111-129.		2
112	Is Huntington's disease a neurodevelopmental disorder?. Science Translational Medicine, 2016, 8, .	5.8	2
113	25 FUNCTIONAL ANNOTATION OF RARE STRUCTURAL VARIATION IN THE HUMAN BRAIN. European Neuropsychopharmacology, 2019, 29, S72-S73.	0.3	1
114	Leveraging Human Induced Pluripotent Stem Cell–Based Models Provides Biological Context to Genome-wide Association Study Findings. Biological Psychiatry, 2019, 85, 532-533.	0.7	1
115	Xenopus models suggest convergence of gene signatures on neurogenesis in autism. Neuron, 2021, 109, 743-745.	3.8	1
116	Correction for Szotek <i>et al.</i> , Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19024-19024.	3.3	0
117	MODELING PREDISPOSITION TO SZ USING HIPSCS. Schizophrenia Research, 2014, 153, S45.	1.1	Ο
118	hiPSC Models Relevant to Schizophrenia. Handbook of Behavioral Neuroscience, 2016, , 391-406.	0.7	0
119	P1-021: Exploring Cell Autonomous and Non-Cell Autonomous Effects of APOE Genotype in IPSC-Derived Astrocytes and Neurons. , 2016, 12, P407-P407.		0
120	692. From Nucleosome to Nucleus: 3D Genome Mappings in Mouse Models of Psychiatric Disease, and in Human Postmortem Brain. Biological Psychiatry, 2017, 81, S280-S281.	0.7	0
121	705. Using iPS Derived Neurons and GWAS Together to Identify Genes for Lithium Response. Biological Psychiatry, 2017, 81, S285-S286.	0.7	Ο
122	What if it was easier to prevent schizophrenia than to treat it?. NPJ Schizophrenia, 2017, 3, 9.	2.0	0
123	105. Modeling the Contribution of Common Variants to Schizophrenia Risk. Biological Psychiatry, 2018, 83, S43.	0.7	Ο
124	20. THE APPLICATION OF STEM CELL MODELS TO VALIDATE RARE AND COMMON VARIANTS CONTRIBUTING TO SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S32-S33.	2.3	0
125	20.4 MODELING THE CONTRIBUTION OF COMMON VARIANTS TO SCHIZOPHRENIA RISK. Schizophrenia Bulletin, 2018, 44, S34-S34.	2.3	0
126	F163. A Psychiatric Disease-Related Circular RNA Controls Neuronal Function and Cognition. Biological Psychiatry, 2019, 85, S276.	0.7	0

#	Article	IF	CITATIONS
127	9. MODELLING THE IMPACT OF RARE AND COMMON VARIANTS IN SCHIZOPHRENIA USING STEM CELLS. Schizophrenia Bulletin, 2019, 45, S101-S101.	2.3	0
128	TRANSCRIPTIONAL SIGNATURES OF CHILDHOOD ONSET SCHIZOPHRENIA IN HIPSC-DERIVED NPCS AND NEURONS ARE CONCORDANT WITH SIGNATURES FROM POST MORTEM ADULT BRAINS. European Neuropsychopharmacology, 2019, 29, S1008.	0.3	0
129	T9. EPIGENETIC PROFILING IN SCHIZOPHRENIA DERIVED HUMAN INDUCED PLURIPOTENT STEM CELLS (HIPSCS) AND NEURONS. Schizophrenia Bulletin, 2020, 46, S234-S234.	2.3	0
130	Partial Pharmacological "Rescue―and MRS spectroscopy in Two Carriers of a Rare Marker Chromosome Containing Extra Copies of the GLDC Gene Encoding a Glycine-Degrading Enzyme Implicate NMDA Receptor Hypofunction in Psychosis. Biological Psychiatry, 2020, 87, S98-S99.	0.7	0
131	Differential Transcriptional Responses to Glucocorticoid Activation in Cultured Blood Immune Cells and Neurons: A Novel Approach to PTSD Biomarker Development. Biological Psychiatry, 2020, 87, S49-S50.	0.7	0
132	If there is not one cure for schizophrenia, there may be many. NPJ Schizophrenia, 2020, 6, 11.	2.0	0
133	Functional genomics of psychiatric disease risk using genome engineering. , 2021, , 711-734.		0
134	Haploinsufficiency of POU4F1 causes an ataxia syndrome with hypotonia and intention tremor. Human Mutation, 2021, 42, 685-693.	1.1	0
135	Cracking the bell jar. Science Translational Medicine, 2015, 7, .	5.8	0
136	Stem cells in gels. Science Translational Medicine, 2015, 7, .	5.8	0
137	Detecting mutant huntingtin protein in HD patients. Science Translational Medicine, 2015, 7, .	5.8	0
138	Inheritance of fear and trauma. Science Translational Medicine, 2015, 7, .	5.8	0
139	Insights into the pharmacology of depression. Science Translational Medicine, 2015, 7, .	5.8	0
140	A new recipe for serotonergic neurons. Science Translational Medicine, 2015, 7, .	5.8	0
141	Can prenatal infection contribute to psychiatric disease in offspring?. Science Translational Medicine, 2016, 8, .	5.8	0
142	CRISPRâ€based functional evaluation of common SZ risk variants. FASEB Journal, 2019, 33, 205.2.	0.2	0
143	Quickly moving too slowly: Interneuron migration in Timothy Syndrome. Cell Stem Cell, 2022, 29, 181-183.	5.2	0