Stanislav I Maslovski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765667/publications.pdf Version: 2024-02-01

STANISLAV I MASLOVSKI

#	Article	IF	CITATIONS
1	Towards Smart Beamforming Utilizing Neural- Networked Programmable Metasurfaces. , 2021, , .		4
2	Guest editorial for special issue on selected extended papers from QCrypt 2020. IET Quantum Communication, 2021, 2, 63-65.	2.2	0
3	Double-Dielectric Microstrip Ultrahigh-Frequency Antenna for Digital Terrestrial Television. Applied Sciences (Switzerland), 2020, 10, 8640.	1.3	3
4	Engineering Metamaterials: Present and Future. Electronics (Switzerland), 2020, 9, 932.	1.8	1
5	Purcell factor and local intensity enhancement in surface-enhanced Raman scattering. Nanophotonics, 2019, 8, 429-434.	2.9	29
6	Envelope Dyadic Green's Function for Uniaxial Metamaterials. Scientific Reports, 2019, 9, 19980.	1.6	0
7	Optimizing performance of metamaterial wormhole superabsorbers. Physical Review E, 2019, 100, 053310.	0.8	2
8	Superabsorbing metamaterial wormhole: Physical modeling and wave interaction effects. Physical Review B, 2018, 98, .	1.1	7
9	Conjugate impedance matched metamaterials: Physical modeling and wave interaction effects. Journal of Physics: Conference Series, 2018, 1092, 012084.	0.3	1
10	Dynamic dyadic green function method for modeling of heat transfer in metamaterials. , 2018, , .		1
11	Dynamics of slowly varying fields in bianisotropic media. , 2018, , .		1
12	Conjugate-impedance matched metamaterials for super-Planckian radiative heat transfer. , 2016, , .		0
13	Light absorption and scattering by metamaterial thermal black hole. , 2016, , .		0
14	Overcoming black body radiation limit in free space: metamaterial superemitter. New Journal of Physics, 2016, 18, 013034.	1.2	47
15	Hyperlens makes thermal emission strongly super-Planckian. Photonics and Nanostructures - Fundamentals and Applications, 2015, 13, 31-41.	1.0	23
16	Asymmetric Mushroom-Type Metamaterials. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 8-17.	2.9	4
17	Spatially Confined UHF RFID Detection With a Metamaterial Grid. IEEE Transactions on Antennas and Propagation, 2014, 62, 378-384.	3.1	9
18	Equivalent circuit model of radiative heat transfer. Physical Review B, 2013, 87, .	1.1	23

STANISLAV I MASLOVSKI

#	Article	IF	CITATIONS
19	Ultrahigh Casimir interaction torque in nanowire systems. Optics Express, 2013, 21, 14943.	1.7	30
20	Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications. Optics Express, 2013, 21, 14988.	1.7	109
21	Quantum friction on monoatomic layers and its classical analog. Physical Review B, 2013, 88, .	1.1	15
22	Fano resonances in nested wire media. Physical Review B, 2013, 88, .	1.1	10
23	Uniaxial indefinite material formed by helical-shaped wires. New Journal of Physics, 2012, 14, 063002.	1.2	9
24	Perfect lensing with phase-conjugating surfaces: toward practical realization. New Journal of Physics, 2012, 14, 035007.	1.2	25
25	Exchange of momentum between moving matter induced by the zero-point fluctuations of the electromagnetic field. Physical Review A, 2012, 86, .	1.0	22
26	Radiation from elementary sources in a uniaxial wire medium. Physical Review B, 2012, 85, .	1.1	28
27	Near-field imaging with a loaded wire medium. Physical Review B, 2012, 86, .	1.1	17
28	Metamaterials Controlled with Light. Physical Review Letters, 2012, 109, 083902.	2.9	105
29	Light-controllable magnetic metamaterials based on loaded split-ring resonators. , 2012, , .		2
30	Negative refraction and partial focusing with a crossed wire mesh: Physical insights and experimental verification. Applied Physics Letters, 2012, 101, 021104.	1.5	15
31	Cherenkov emission in a nanowire material. Physical Review B, 2012, 85, .	1.1	69
32	Subwavelength imaging with arrays of plasmonic scatterers. Optics Communications, 2012, 285, 3363-3367.	1.0	7
33	An approach to finding the correct branch from the forest of possible solutions for extracted effective material parameters. , 2011, , .		0
34	Controlling split-ring resonators with light. Applied Physics Letters, 2011, 99, .	1.5	34
35	Mushroom-Type High-Impedance Surface With Loaded Vias: Homogenization Model and Ultra-Thin Design. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 1503-1506.	2.4	23
36	Indefinite dielectric response and all-angle negative refraction in a structure with deeply-subwavelength inclusions. Physical Review B, 2011, 84, .	1.1	22

STANISLAV I MASLOVSKI

#	Article	IF	CITATIONS
37	A Stepwise Nicolson–Ross–Weir-Based Material Parameter Extraction Method. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 1295-1298.	2.4	227
38	Optimal filling factor of nanorod lenses for subwavelength imaging. Physical Review A, 2011, 84, .	1.0	5
39	Ultraconfined Interlaced Plasmons. Physical Review Letters, 2011, 107, 063903.	2.9	16
40	Casimir forces at the threshold of the Cherenkov effect. Physical Review A, 2011, 84, .	1.0	8
41	Mimicking Boyer's Casimir repulsion with a nanowire material. Physical Review A, 2011, 83, .	1.0	29
42	Casimir repulsion in moving media. Physical Review A, 2011, 84, .	1.0	10
43	Ultralong-range Casimir-Lifshitz forces mediated by nanowire materials. Physical Review A, 2010, 82, .	1.0	21
44	Physical restrictions on the Casimir interaction of metal-dielectric metamaterials: An effective-medium approach. Physical Review A, 2010, 82, .	1.0	17
45	The auxiliary source method and its application to the reflection problem at an interface with tilted wires. , 2010, , .		1
46	Generalized additional boundary conditions for wire media. New Journal of Physics, 2010, 12, 113047.	1.2	57
47	Power Relations and a Consistent Analytical Model for Receiving Wire Antennas. IEEE Transactions on Antennas and Propagation, 2010, 58, 1436-1448.	3.1	40
48	Comment on "Repulsive Casimir Force in Chiral Metamaterials― Physical Review Letters, 2010, 105, 189301; author reply 189302.	2.9	29
49	Experimental verification of full reconstruction of the near-field with a metamaterial lens. Applied Physics Letters, 2010, 97, .	1.5	18
50	Nonlocal permittivity from a quasistatic model for a class of wire media. Physical Review B, 2009, 80, .	1.1	108
51	Finite-difference frequency-domain method for the extraction of effective parameters of metamaterials. Physical Review B, 2009, 80, .	1.1	29
52	Subwavelength-resolution imaging device based on frequency scanning. , 2008, , .		0
53	Subwavelength imaging based on frequency scanning. Journal of Applied Physics, 2008, 104, 103109.	1.1	10
54	Three-dimensional isotropic perfect lens based on LC-loaded transmission lines. Journal of Applied Physics, 2006, 99, 064912.	1.1	54

#	Article	IF	CITATIONS
55	Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens. Journal of Applied Physics, 2006, 99, 124910.	1.1	53
56	Near-field enhancement and imaging in double cylindrical polariton-resonant structures: Enlarging superlens. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 357, 397-400.	0.9	26
57	Experimental demonstration of subwavelength field channeling at microwave frequencies using a capacitively loaded wire medium. Physical Review B, 2006, 73, .	1.1	35
58	PIFA loaded with artificial magnetic material: Practical example for two utilization strategies. Microwave and Optical Technology Letters, 2005, 46, 205-210.	0.9	20
59	ARTIFICIAL MAGNETIC MATERIALS BASED ON THE NEW MAGNETIC PARTICLE: METASOLENOID. Progress in Electromagnetics Research, 2005, 54, 61-81.	1.6	99
60	Near-field enhancement and imaging in double planar polariton-resonant structures. Journal of Applied Physics, 2004, 96, 1293-1300.	1.1	98
61	Phase conjugation and perfect lensing. Journal of Applied Physics, 2003, 94, 4241-4243.	1.1	107
62	On the concept of the transparent absorbing boundary. , 1999, 23, 59-62.		2