List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7656345/publications.pdf Version: 2024-02-01

	8208	10129
24,182	78	145
citations	h-index	g-index
329	329	21773
docs citations	times ranked	citing authors
	24,182 citations 329 docs citations	24,182 citations 78 h-index 329 docs citations 329 times ranked

#	Article	IF	CITATIONS
1	Influence of strut-size and cell-size variations on porous Ti6Al4V structures for load-bearing implants. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105023.	1.5	12
2	Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives. Materials Today, 2022, 52, 207-224.	8.3	88
3	Metal Additive Manufacturing for Load-Bearing Implants. Journal of the Indian Institute of Science, 2022, 102, 561-584.	0.9	12
4	Translation of 3D printed materials for medical applications. MRS Bulletin, 2022, 47, 39-48.	1.7	10
5	Additive manufacturing of bimetallic structures. Virtual and Physical Prototyping, 2022, 17, 256-294.	5.3	47
6	Selective laser melting of Ti6Al4V-B4C-BN in situ reactive composites. Journal of Materials Research and Technology, 2022, 18, 2654-2671.	2.6	11
7	Additive manufacturing of Ti-Ni bimetallic structures. Materials and Design, 2022, 215, 110461.	3.3	17
8	Laser-based directed energy deposition (DED-LB) of advanced materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142967.	2.6	82
9	Plasma sprayed fluoride and zinc doped hydroxyapatite coated titanium for load-bearing implants. Surface and Coatings Technology, 2022, 440, 128464.	2.2	14
10	Diamond-reinforced cutting tools using laser-based additive manufacturing. Additive Manufacturing, 2021, 37, 101602.	1.7	11
11	Influence of Compositionally Graded Interface on Microstructure and Compressive Deformation of 316L Stainless Steel to Al12Si Aluminum Alloy Bimetallic Structures. ACS Applied Materials & Interfaces, 2021, 13, 9174-9185.	4.0	17
12	Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140925.	2.6	29
13	Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Additive Manufacturing, 2021, 39, 101870.	1.7	21
14	Hydroxyapatite reinforced Ti6Al4V composites for load-bearing implants. Acta Biomaterialia, 2021, 123, 379-392.	4.1	37
15	Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. Additive Manufacturing, 2021, 40, 101895.	1.7	18
16	Zirconia-toughened alumina coated Ti6Al4V via additive manufacturing. Materials Letters, 2021, 291, 129577.	1.3	9
17	3D Printing in alloy design to improve biocompatibility in metallic implants. Materials Today, 2021, 45, 20-34.	8.3	74
18	Processing and thermal diffusivity measurements of compositionally graded Al-12Si to Al2O3 structures. Materials Letters, 2021, 290, 129466.	1.3	6

#	Article	IF	CITATIONS
19	Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 2021, 49, 271-295.	8.3	351
20	Biotribocorrosion of 3D-printed silica-coated Ti6Al4V for load-bearing implants. Journal of Materials Research, 2021, 36, 3974-3984.	1.2	6
21	Additive manufacturing of alumina-silica reinforced Ti6Al4V for articulating surfaces of load-bearing implants. Ceramics International, 2021, 47, 18875-18885.	2.3	6
22	Nature-inspired materials and structures using 3D Printing. Materials Science and Engineering Reports, 2021, 145, 100609.	14.8	36
23	Osteoclast-mediated resorption on additively manufactured porous metal and plasma-sprayed HA-coated Ti implants. Journal of Materials Research, 2021, 36, 3894-3904.	1.2	4
24	Design and manufacturing of biomimetic porous metal implants. Journal of Materials Research, 2021, 36, 3952-3962.	1.2	11
25	Understanding wear behavior of 3D-Printed calcium phosphate-reinforced CoCrMo in biologically relevant media. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104564.	1.5	2
26	Modeling and experimental validation of additively manufactured tantalum-titanium bimetallic interfaces. Materials and Design, 2021, 207, 109793.	3.3	7
27	3D printing of biomedical materials and devices. Journal of Materials Research, 2021, 36, 3713-3724.	1.2	18
28	Designing high-temperature oxidation-resistant titanium matrix composites via directed energy deposition-based additive manufacturing. Materials and Design, 2021, 212, 110205.	3.3	10
29	Biointegration of three-dimensional–printed biomaterials and biomedical devices. , 2020, , 433-482.		3
30	Functional bimetallic joints of Ti6Al4V to SS410. Additive Manufacturing, 2020, 31, 100931.	1.7	27
31	Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing. Additive Manufacturing, 2020, 31, 101004.	1.7	20
32	Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants. Additive Manufacturing, 2020, 36, 101553.	1.7	12
33	Titanium–Silicon on CoCr Alloy for Load-Bearing Implants Using Directed Energy Deposition-Based Additive Manufacturing. ACS Applied Materials & Interfaces, 2020, 12, 51263-51272.	4.0	14
34	3D Printing for Bone Regeneration. Current Osteoporosis Reports, 2020, 18, 505-514.	1.5	43
35	Model-driven directed-energy-deposition process workflow incorporating powder flowrate as key parameter. Manufacturing Letters, 2020, 25, 88-92.	1.1	14
36	Thermal Oxide Layer Enhances Crystallinity and Mechanical Properties for Plasma-Sprayed Hydroxyapatite Biomedical Coatings. ACS Applied Materials & Interfaces, 2020, 12, 33465-33472.	4.0	26

#	Article	IF	CITATIONS
37	CoCr Alloys. , 2020, , 257-269.		3
38	Recent developments in metal additive manufacturing. Current Opinion in Chemical Engineering, 2020, 28, 96-104.	3.8	88
39	Additively Manufactured Ti6Al4V-Si-Hydroxyapatite composites for articulating surfaces of load-bearing implants. Additive Manufacturing, 2020, 34, 101241.	1.7	17
40	Naturally architected microstructures in structural materials via additive manufacturing. Additive Manufacturing, 2020, 34, 101243.	1.7	6
41	Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration. Acta Biomaterialia, 2019, 96, 686-693.	4.1	69
42	Direct fabrication of bimetallic Ti6Al4V+Al12Si structures via additive manufacturing. Additive Manufacturing, 2019, 29, 100783.	1.7	26
43	Influence of deposition orientation on fatigue response of LENSâ,"¢ processed Ti6Al4V. Materials Letters, 2019, 255, 126541.	1.3	19
44	Additive manufacturing in repair: Influence of processing parameters on properties of Inconel 718. Materials Letters, 2019, 252, 256-259.	1.3	68
45	Clinical significance of three-dimensional printed biomaterials and biomedical devices. MRS Bulletin, 2019, 44, 494-504.	1.7	23
46	Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomaterialia, 2019, 92, 325-335.	4.1	107
47	Additively manufactured calcium phosphate reinforced CoCrMo alloy: Bio-tribological and biocompatibility evaluation for load-bearing implants. Additive Manufacturing, 2019, 28, 312-324.	1.7	47
48	Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Additive Manufacturing, 2019, 28, 259-266.	1.7	74
49	Titania nanotube interface to increase adhesion strength of hydroxyapatite sol-gel coatings on Ti-6Al-4V for orthopedic applications. Surface and Coatings Technology, 2019, 372, 140-147.	2.2	50
50	Bond strength measurement for additively manufactured Inconel 718- GRCop84 copper alloy bimetallic joints. Additive Manufacturing, 2019, 27, 576-585.	1.7	33
51	Influence of boron nitride on reinforcement to improve high temperature oxidation resistance of titanium. Journal of Materials Research, 2019, 34, 1279-1289.	1.2	19
52	First Demonstration of Additive Manufacturing of Cutting Tools using Directed Energy Deposition System: Stelliteâ,,¢-Based Cutting Tools. Additive Manufacturing, 2019, 25, 460-468.	1.7	21
53	Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomaterialia, 2019, 84, 414-423.	4.1	121

#	Article	IF	CITATIONS
55	Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using Laser Engineered Net Shaping. Additive Manufacturing, 2018, 21, 104-111.	1.7	71
56	Additive manufacturing of Inconel 718—Copper alloy bimetallic structure using laser engineered net shaping (LENSâ"¢). Additive Manufacturing, 2018, 21, 133-140.	1.7	137
57	Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium. Materials Science and Engineering C, 2018, 88, 166-171.	3.8	49
58	Additive manufacturing of multi-material structures. Materials Science and Engineering Reports, 2018, 129, 1-16.	14.8	577
59	Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Materials and Design, 2018, 151, 102-112.	3.3	82
60	Compositionally graded magnetic-nonmagnetic bimetallic structure using laser engineered net shaping. Materials Letters, 2018, 216, 16-19.	1.3	63
61	Laser surface modification of 316L stainless steel. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 569-577.	1.6	35
62	Silver nanoparticle deposited implants to treat osteomyelitis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1073-1083.	1.6	34
63	Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today, 2018, 21, 22-37.	8.3	1,264
64	Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomaterialia, 2018, 66, 6-22.	4.1	193
65	Additive manufacturing of biomaterials. Progress in Materials Science, 2018, 93, 45-111.	16.0	502
66	Additive manufacturing of compositionally gradient metal-ceramic structures: Stainless steel to vanadium carbide. Materials and Design, 2018, 139, 419-428.	3.3	77
67	Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: Processing and wear induced damage evaluation. Acta Biomaterialia, 2018, 66, 118-128.	4.1	57
68	Reactive-deposition-based additive manufacturing of Ti-Zr-BN composites. Additive Manufacturing, 2018, 24, 353-363.	1.7	21
69	Starch-hydroxyapatite composite bone scaffold fabrication utilizing a slurry extrusion-based solid freeform fabricator. Additive Manufacturing, 2018, 24, 47-59.	1.7	55
70	In situ reactive multi-material Ti6Al4V-calcium phosphate-nitride coatings for bio-tribological applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85, 1-11.	1.5	24
71	Invited review article: Metal-additive manufacturing—Modeling strategies for application-optimized designs. Additive Manufacturing, 2018, 22, 758-774	1.7	126
72	Additive manufacturing of Inconel 718 – Ti6Al4V bimetallic structures. Additive Manufacturing, 2018, 22, 844-851.	1.7	101

#	Article	IF	CITATIONS
73	3D-printed β-TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model. Journal of Materials Research, 2018, 33, 1939-1947.	1.2	47
74	Influence of simultaneous addition of carbon nanotubes and calcium phosphate on wear resistance of 3D-printed Ti6Al4V. Journal of Materials Research, 2018, 33, 2077-2086.	1.2	15
75	Laser-Based Additive Manufacturing of Zirconium. Applied Sciences (Switzerland), 2018, 8, 393.	1.3	8
76	Silica coated titanium using Laser Engineered Net Shaping for enhanced wear resistance. Additive Manufacturing, 2018, 23, 303-311.	1.7	20
77	3D Printing of Bone Implants and Replacements. American Scientist, 2018, 106, 112.	0.1	5
78	In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants. Annals of Biomedical Engineering, 2017, 45, 249-260.	1.3	68
79	Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds. Annals of Biomedical Engineering, 2017, 45, 261-272.	1.3	107
80	Introduction to Biomaterials and Devices for Bone Disorders. , 2017, , 1-27.		14
81	Silver doped resorbable tricalcium phosphate scaffolds for bone graft applications. Materials Science and Engineering C, 2017, 79, 763-769.	3.8	45
82	Understanding long-term silver release from surface modified porous titanium implants. Acta Biomaterialia, 2017, 58, 550-560.	4.1	68
83	Niobium carbide compostie coatings on SS304 using laser engineered net shaping (LENSâ,,¢). Materials Letters, 2017, 189, 89-92.	1.3	18
84	Effects of MgO and SiO ₂ on Plasma-Sprayed Hydroxyapatite Coating: An in Vivo Study in Rat Distal Femoral Defects. ACS Applied Materials & Interfaces, 2017, 9, 25731-25737.	4.0	52
85	Boron nitride-reinforced SS316 composite: influence of laser processing parameters on microstructure and wear resistance. Journal of Materials Science, 2017, 52, 10829-10839.	1.7	11
86	Current Challenges and Future Needs in Biomaterials and Devices for Bone Disorders. , 2017, , 517-526.		1
87	Ceramics in Bone Grafts and Coated Implants. , 2017, , 265-314.		13
88	Laser surface modification of metallic biomaterials. , 2016, , 175-195.		8
89	Laser Engineering Net Shaping of Microporous Ti6Al4V Filters. Frontiers in Mechanical Engineering, 2016, 2, .	0.8	4
90	Direct Ink Writing of a Preceramic Polymer and Fillers to Produce Hardystonite (Ca ₂ ZnSi ₂ O ₇) Bioceramic Scaffolds. Journal of the American Ceramic Society, 2016, 99, 1960-1967.	1.9	79

#	Article	IF	CITATIONS
91	Surface Modification and Electro-thermal Polarisation for Bone Tissue Engineering. , 2016, , 103-114.		1
92	Electro-thermal Polarisation of Hydroxyapatite Ceramics and Coatings for Bone Tissue Engineering Applications. , 2016, , 115-134.		0
93	Comparative Study of Silver Nanoparticles Coated and Uncoated NiO–Fe ₂ O ₃ –CaO–SiO ₂ –P ₂ O ₅ Ferromagnetic Bioactive Ceramics. Journal of the American Ceramic Society, 2016, 99, 3632-3638.	1.9	6
94	Calcium phosphate–titanium composites for articulating surfaces of load-bearing implants. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 280-288.	1.5	40
95	Understanding compressive deformation behavior of porous Ti using finite element analysis. Materials Science and Engineering C, 2016, 64, 436-443.	3.8	32
96	Tribological, electrochemical and in vitro biocompatibility properties of SiC reinforced composite coatings. Materials and Design, 2016, 95, 510-517.	3.3	32
97	Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites. Jom, 2016, 68, 822-830.	0.9	30
98	Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 508-518.	1.5	34
99	Laser processing of in situ TiN/Ti composite coating on titanium. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 239-249.	1.5	59
100	Three-dimensional printing of biomaterials and soft materials. MRS Bulletin, 2015, 40, 1162-1169.	1.7	20
101	IGF-loaded silicon and zinc doped brushite cement: physico-mechanical characterization and <i>in vivo</i> osteogenesis evaluation. Integrative Biology (United Kingdom), 2015, 7, 1561-1573.	0.6	23
102	Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomaterialia, 2015, 17, 47-55.	4.1	156
103	Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and <i>in vivo</i> osteogenesis in a rabbit femur model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1549-1559.	1.6	31
104	3D printing of biomaterials. MRS Bulletin, 2015, 40, 108-115.	1.7	136
105	Compressive deformation of porous lunar regolith. Materials Letters, 2015, 143, 276-278.	1.3	37
106	Additive manufacturing of Ti-Si-N ceramic coatings on titanium. Applied Surface Science, 2015, 346, 428-437.	3.1	61
107	SrO―and MgOâ€doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and <i>in vivo</i> osteogenesis in a rabbit model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 679-690.	1.6	98
108	Stainless steel to titanium bimetallic structure using LENSâ,,¢. Additive Manufacturing, 2015, 5, 1-8.	1.7	98

#	Article	IF	CITATIONS
109	Laser Processing of Tricalicum Phosphate Reinforced Cobalt - Chrome Alloy Coatings. Ceramic Transactions, 2014, , 85-94.	0.1	1
110	In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 259-271.	1.5	111
111	Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 335-344.	1.5	135
112	Compressive deformation behaviour of coral Porites Cylindrica. Materials Letters, 2014, 133, 155-157.	1.3	1
113	Thermal degradation of TiO2 nanotubes on titanium. Applied Surface Science, 2014, 317, 573-580.	3.1	27
114	Laser processing of Fe based bulk amorphous alloy coating on zirconium. Surface and Coatings Technology, 2014, 240, 286-292.	2.2	31
115	Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 631-641.	1.3	300
116	Mechanical Properties of Bioceramic Coatings on MedicalÂImplants. , 2013, , 311-321.		4
117	Influence of pentavalent dopant addition to polarization and bioactivity of hydroxyapatite. Materials Science and Engineering C, 2013, 33, 3061-3068.	3.8	19
118	Talc as friction reducing additive to lubricating oil. Applied Surface Science, 2013, 276, 383-389.	3.1	35
119	Inactivation of Escherichia coli Population on Fruit Surfaces Using Ultraviolet-C Light: Influence of Fruit Surface Characteristics. Food and Bioprocess Technology, 2013, 6, 2959-2973.	2.6	48
120	Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite. Materials Science and Engineering C, 2013, 33, 2846-2854.	3.8	71
121	Laser Processing of Fe-Based Bulk Amorphous Alloy Coatings on Titanium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4914-4926.	1.1	13
122	Introduction to Biomaterials. , 2013, , 1-9.		25
123	Bone tissue engineering using 3D printing. Materials Today, 2013, 16, 496-504.	8.3	1,490
124	Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology, 2013, 31, 594-605.	4.9	404
125	3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomaterials Science, 2013, 1, 1250.	2.6	149
126	Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomaterials Science, 2013, 1, 74-82.	2.6	82

#	Article	IF	CITATIONS
127	First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 2012, 18, 451-457.	1.6	98
128	Resorbable Tricalcium Phosphates for Bone Tissue Engineering: Influence of <scp><scp>SrO</scp></scp> Doping. Journal of the American Ceramic Society, 2012, 95, 3095-3102.	1.9	12
129	Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomaterialia, 2012, 8, 3144-3152.	4.1	301
130	ZnO, SiO ₂ , and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and <i>in vitro</i> bone–cell material interactions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2203-2212.	1.6	40
131	Patient specific implants for amputation prostheses: Design, manufacture and analysis. Veterinary and Comparative Orthopaedics and Traumatology, 2012, 25, 286-296.	0.2	14
132	Mechanical, In vitro Antimicrobial, and Biological Properties of Plasma-Sprayed Silver-Doped Hydroxyapatite Coating. ACS Applied Materials & Interfaces, 2012, 4, 1341-1349.	4.0	167
133	Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012, 30, 546-554.	4.9	1,763
134	Compression fatigue behavior of laser processed porous NiTi alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 62-68.	1.5	67
135	Mechanical property and in vitro biocompatibility of brushite cement modified by polyethylene glycol. Materials Science and Engineering C, 2012, 32, 2145-2152.	3.8	37
136	Investigation of in vitro bone cell adhesion and proliferation on Ti using direct current stimulation. Materials Science and Engineering C, 2012, 32, 2163-2168.	3.8	30
137	MgO-Doped Tantalum Coating on Ti: Microstructural Study and Biocompatibility Evaluation. ACS Applied Materials & Interfaces, 2012, 4, 577-580.	4.0	50
138	Understanding bioactivity and polarizability of hydroxyapatite doped with tungsten. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1836-1845.	1.6	13
139	Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dental Materials, 2012, 28, 113-122.	1.6	335
140	Laser processing of in situ synthesized TiB–TiN-reinforced Ti6Al4V alloy coatings. Scripta Materialia, 2012, 66, 578-581.	2.6	99
141	Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 213-221.	2.6	82
142	Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Materials Science and Engineering C, 2012, 32, 1112-1120.	3.8	74
143	Laser processed TiN reinforced Ti6Al4V composite coatings. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 6, 9-20.	1.5	121
144	Laser processing of bulk Al–12Si alloy: influence of microstructure on thermal properties. Philosophical Magazine, 2011, 91, 574-588.	0.7	31

#	Article	IF	CITATIONS
145	Photoluminescence of Dense Nanocrystalline Titanium Dioxide Thin Films: Effect of Doping and Thickness and Relation to Gas Sensing. ACS Applied Materials & Interfaces, 2011, 3, 2281-2288.	4.0	124
146	Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped Î ² -TCP. Bone, 2011, 48, 1282-1290.	1.4	136
147	Densification Study and Mechanical Properties of Microwave-Sintered Mullite and Mullite-Zirconia Composites. Journal of the American Ceramic Society, 2011, 94, 32-41.	1.9	42
148	Influence of MgO, SrO, and ZnO Dopants on Electro-Thermal Polarization Behavior and In Vitro Biological Properties of Hydroxyapatite Ceramics. Journal of the American Ceramic Society, 2011, 94, 1281-1288.	1.9	42
149	Wear performance of laser processed tantalum coatings. Materials Science and Engineering C, 2011, 31, 1832-1835.	3.8	35
150	In vitro biological and tribological properties of transparent magnesium aluminate (Spinel) and aluminum oxynitride (ALONî). Journal of Materials Science: Materials in Medicine, 2011, 22, 1511-1519.	1.7	30
151	Calcium phosphate ceramics in drug delivery. Jom, 2011, 63, 93-98.	0.9	35
152	Laser surface modification of metallic biomaterials. Jom, 2011, 63, 94-99.	0.9	29
153	Effect of electrical polarization and composition of biphasic calcium phosphates on early stage osteoblast interactions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 306-314.	1.6	52
154	Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 258-265.	1.6	92
155	Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma. Acta Biomaterialia, 2011, 7, 866-873.	4.1	77
156	Bone cell–materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomaterialia, 2011, 7, 1902-1912.	4.1	89
157	Carbon nanotube reinforced Cu–10Sn alloy composites: Mechanical and thermal properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6727-6732.	2.6	36
158	In vitro wear rate and Co ion release of compositionally and structurally graded CoCrMo-Ti6Al4V structures. Materials Science and Engineering C, 2011, 31, 809-814.	3.8	47
159	Rotating bending fatigue response of laser processed porous NiTi alloy. Materials Science and Engineering C, 2011, 31, 815-820.	3.8	34
160	Bone cell–material interactions on metal-ion doped polarized hydroxyapatite. Materials Science and Engineering C, 2011, 31, 755-761.	3.8	49
161	Quasi-static torsional deformation behavior of porous Ti6Al4V alloy. Materials Science and Engineering C, 2011, 31, 945-949.	3.8	14
162	Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surface and Coatings Technology, 2011, 205, 2785-2792.	2.2	216

AMIT BANDYOPADHYAY

#	Article	IF	CITATIONS
163	Microstructure, mechanical and wear properties of laser processed SiC particle reinforced coatings on titanium. Surface and Coatings Technology, 2011, 205, 4366-4373.	2.2	57
164	Zn- and Mg-Doped Hydroxyapatite Nanoparticles for Controlled Release of Protein. Langmuir, 2010, 26, 4958-4964.	1.6	184
165	Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomaterialia, 2010, 6, 2329-2334.	4.1	265
166	Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of I ² -TCP ceramics. Acta Biomaterialia, 2010, 6, 4167-4174.	4.1	152
167	Microstructure and wear properties of laser deposited WC–12%Co composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6677-6682.	2.6	73
168	Direct laser processing of bulk lead zirconate titanate ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 172, 85-88.	1.7	43
169	Tantalum—A bioactive metal for implants. Jom, 2010, 62, 61-64.	0.9	88
170	Laser processing of SiC-particle-reinforced coating on titanium. Scripta Materialia, 2010, 63, 438-441.	2.6	191
171	Comparison of Tantalum and Hydroxyapatite Coatings on Titanium for Applications in Load Bearing Implants. Advanced Engineering Materials, 2010, 12, B637.	1.6	36
172	Biphasic Resorbable Calcium Phosphate Ceramic for Bone Implants and Local Alendronate Delivery. Advanced Engineering Materials, 2010, 12, B148.	1.6	29
173	Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping. Materials Science and Engineering C, 2010, 30, 50-57.	3.8	131
174	Micromachined Si channel width and tortuosity on human osteoblast cell attachment and proliferation. Materials Science and Engineering C, 2010, 30, 71-77.	3.8	3
175	Titanium dioxide thin films for high temperature gas sensors. Thin Solid Films, 2010, 519, 434-438.	0.8	39
176	Laser surface modification of AISI 410 stainless steel with brass for enhanced thermal properties. Surface and Coatings Technology, 2010, 204, 2510-2517.	2.2	19
177	Laser processing of Fe-based bulk amorphous alloy. Surface and Coatings Technology, 2010, 205, 2661-2667.	2.2	83
178	Electrically polarized HAp-coated Ti: In vitro bone cell–material interactions. Acta Biomaterialia, 2010, 6, 641-651.	4.1	76
179	Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomaterialia, 2010, 6, 1640-1648.	4.1	361
180	Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomaterialia, 2010, 6, 3349-3359.	4.1	394

#	Article	IF	CITATIONS
181	Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties. Acta Biomaterialia, 2010, 6, 3782-3790.	4.1	172
182	Bulk Processing of Hydroxyapatite Nanopowder Using Radio Frequency Induction Plasma. Journal of the American Ceramic Society, 2010, 93, 3720-3725.	1.9	13
183	A two-dimensional electromechanical composite plate model for piezoelectric micromachined ultrasonic transducers (pMUTs). Journal of Micromechanics and Microengineering, 2010, 20, 015013.	1.5	15
184	Electrically Polarized Biphasic Calcium Phosphates: Adsorption and Release of Bovine Serum Albumin. Langmuir, 2010, 26, 16625-16629.	1.6	86
185	Understanding compressive deformation in porous titanium. Philosophical Magazine, 2010, 90, 3081-3094.	0.7	19
186	TiO ₂ nanotubes on Ti: Influence of nanoscale morphology on bone cell–materials interaction. Journal of Biomedical Materials Research - Part A, 2009, 90A, 225-237.	2.1	239
187	Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 481-490.	1.6	100
188	Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 831-838.	1.6	69
189	Laser surface modification of Al–4Cu–1Mg alloy for enhanced thermal conductivity. Optics and Lasers in Engineering, 2009, 47, 651-655.	2.0	8
190	Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin. Acta Biomaterialia, 2009, 5, 3112-3121.	4.1	90
191	Surface modification of AISI 410 stainless steel using laser engineered net shaping (LENSTM). Materials & Design, 2009, 30, 1490-1496.	5.1	84
192	Influence of crystallinity on CO gas sensing for TiO2 films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 164, 38-43.	1.7	34
193	Surface modification of titanium for load-bearing applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 19-24.	1.7	21
194	Application of Laser Engineered Net Shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. Journal of Materials Science: Materials in Medicine, 2009, 20, 29-34.	1.7	159
195	Synthesis, Processing, Mechanical, and Biological Property Characterization of Hydroxyapatite Whiskerâ€Reinforced Hydroxyapatite Composites. Journal of the American Ceramic Society, 2009, 92, 323-330.	1.9	76
196	Microwave sintering of calcium phosphate ceramics. Materials Science and Engineering C, 2009, 29, 1144-1149.	3.8	64
197	Bone cell–materials interaction on alumina ceramics with different grain sizes. Materials Science and Engineering C, 2009, 29, 1201-1206.	3.8	12
198	In vitro antimicrobial and biological properties of laser assisted tricalcium phosphate coating on titanium for load bearing implant. Materials Science and Engineering C, 2009, 29, 1965-1968.	3.8	41

#	Article	IF	CITATIONS
199	Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS). Acta Biomaterialia, 2009, 5, 1831-1837.	4.1	157
200	Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomaterialia, 2009, 5, 1686-1696.	4.1	85
201	Role of surface charge and wettability on early stage mineralization and bone cell–materials interactions of polarized hydroxyapatite. Acta Biomaterialia, 2009, 5, 2178-2188.	4.1	239
202	Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants. Acta Biomaterialia, 2009, 5, 2800-2809.	4.1	85
203	Double Emulsion Droplets as Microreactors for Synthesis of Mesoporous Hydroxyapatite. Chemistry of Materials, 2009, 21, 5548-5555.	3.2	148
204	Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta Biomaterialia, 2008, 4, 697-706.	4.1	170
205	Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. Journal of Materials Science: Materials in Medicine, 2008, 19, 2669-2677.	1.7	152
206	Engineered porous metals for implants. Jom, 2008, 60, 45-48.	0.9	80
207	Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 455-460.	1.6	105
208	Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. Acta Biomaterialia, 2008, 4, 324-333.	4.1	157
209	Tricalcium phosphate based resorbable ceramics: Influence of NaF and CaO addition. Materials Science and Engineering C, 2008, 28, 11-17.	3.8	47
210	Effect of hafnium incorporation on the crystallization and mechanical behavior of a Zr-based bulk amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 477, 233-242.	2.6	5
211	Microstructural Characterization and Mechanical Properties of Si ₃ N ₄ Formed by Fused Deposition of Ceramics. International Journal of Applied Ceramic Technology, 2008, 5, 127-137.	1.1	60
212	Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping. International Journal of Applied Ceramic Technology, 2008, 5, 234-242.	1.1	155
213	Biocompatibility and <i>In Situ</i> Growth of TiO ₂ Nanotubes on Ti Using Different Electrolyte Chemistry. Journal of the American Ceramic Society, 2008, 91, 2808-2814.	1.9	43
214	Laser Surface Modification of Electrophoretically Deposited Hydroxyapatite Coating on Titanium. Journal of the American Ceramic Society, 2008, 91, 3517-3521.	1.9	27
215	Surface modification of laser-processed porous titanium for load-bearing implants. Scripta Materialia, 2008, 59, 822-825.	2.6	45
216	Characterization and modeling of a piezoelectric micromachined ultrasonic transducer with a very large length/width aspect ratio. Journal of Micromechanics and Microengineering, 2008, 18, 025037.	1.5	22

#	Article	IF	CITATIONS
217	Time-domain THz spectroscopy of vibrational modes in a quasi-one-dimensional charge-density-wave crystal. , 2008, , .		0
218	Compositionally graded yttria-stabilized zirconia coating on stainless steel using laser engineered net shaping (LENSâ"¢). Scripta Materialia, 2007, 57, 861-864.	2.6	95
219	Finite Element Analysis of Piezoelectric Thin Film Membrane Structures. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2036-2044.	1.7	19
220	Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics. Journal of Biomedical Materials Research - Part A, 2007, 82A, 113-121.	2.1	34
221	Preparation and cell–materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surface and Coatings Technology, 2007, 201, 4685-4693.	2.2	141
222	Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substratea~†. Acta Biomaterialia, 2007, 3, 359-367.	4.1	220
223	Bone cell–materials interaction on Si microchannels with bioinert coatings. Acta Biomaterialia, 2007, 3, 523-530.	4.1	8
224	Surface modifications and cell–materials interactions with anodized Ti. Acta Biomaterialia, 2007, 3, 573-585.	4.1	292
225	Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia, 2007, 3, 997-1006.	4.1	384
226	Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomaterialia, 2007, 3, 1007-1018.	4.1	411
227	Hydroxyapatite nanopowders: Synthesis, densification and cell–materials interaction. Materials Science and Engineering C, 2007, 27, 729-735.	3.8	92
228	Strength of open-cell 6101 aluminum foams under free and constrained compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 178-188.	2.6	30
229	Influence of ZnO doping in calcium phosphate ceramics. Materials Science and Engineering C, 2007, 27, 14-17.	3.8	75
230	Compositionally Graded Aluminum Oxide Coatings on Stainless Steel Using Laser Processing. Journal of the American Ceramic Society, 2007, 90, 1989-1991.	1.9	32
231	Laser Processing of Net-Shape NiTi Shape Memory Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1096-1103.	1.1	128
232	Influence of top electrode design on pMUTs performance. Sensors and Actuators A: Physical, 2007, 135, 613-619.	2.0	18
233	Aluminum-doped TiO2 nano-powders for gas sensors. Sensors and Actuators B: Chemical, 2007, 124, 111-117.	4.0	122
234	Size Effect on the Device Performance of K31 Type pMUTs: Experiments and Equivalent Circuit Analysis. , 2006, , .		1

#	Article	IF	CITATIONS
235	Effect of Zn, Sr, and Y Addition on Electrical Properties of PZT Thin Films. Journal of the American Ceramic Society, 2006, 89, 1140-1143.	1.9	18
236	Influence of La2O3, SrO, and ZnO Addition on PZT. Journal of the American Ceramic Society, 2006, 89, 1594-1600.	1.9	38
237	Calcium Phosphateâ€Based Resorbable Ceramics: Influence of MgO, ZnO, and SiO ₂ Dopants. Journal of the American Ceramic Society, 2006, 89, 2675-2688.	1.9	217
238	Titanium silicide (Ti5Si3) synthesis under shock loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 426, 147-156.	2.6	12
239	Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. Journal of Biomedical Materials Research - Part A, 2006, 79A, 804-814.	2.1	130
240	P2P-3 Numerical and Experimental Study of the Dynamic Behavior of Piezoelectric Micromachined Ultrasonic Transducers (pMUTs). , 2006, , .		2
241	Application of fused deposition in controlled microstructure metalâ€ceramic composites. Rapid Prototyping Journal, 2006, 12, 121-128.	1.6	23
242	Influence of La2O3, SrO, and ZnO Addition on PZT. Journal of the American Ceramic Society, 2006, .	1.9	1
243	Influence of processing parameters on PZT thick films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 116, 19-24.	1.7	7
244	Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser. Materials Science and Engineering C, 2005, 25, 541-547.	3.8	97
245	Interaction of human osteoblasts with bioinert and bioactive ceramic substrates. Journal of Biomedical Materials Research - Part A, 2005, 75A, 588-594.	2.1	33
246	Effect of crystallization on the mechanical properties of Zr56.7Cu15.3Ni12.5Nb5.0Al10.0Y0.5 bulk amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 394, 302-311.	2.6	20
247	Nanostructured alumina doped TiO2 ceramics for gas sensors. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	3
248	Piezoelectric micromachined ultrasonic transducers: modeling the influence of structural parameters on device performance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 455-468.	1.7	57
249	Growth and characterization of single-crystal lead magnesium niobate–lead titanate via high-pressure vertical Bridgman method. Journal of Materials Research, 2004, 19, 609-615.	1.2	6
250	Effects of designed tubular porosity on compressive strengths of honeycomb ceramics. Journal of Materials Science, 2004, 39, 4575-4586.	1.7	1
251	CaO–P2O5–Na2O-based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials, 2004, 25, 2331-2339.	5.7	108
252	Effects of MgO-CaO-P2O5-Na2O-based additives on mechanical and biological properties of hydroxyapatite. Journal of Biomedical Materials Research Part B, 2004, 71A, 35-44.	3.0	22

#	Article	IF	CITATIONS
253	Processing of alumina and zirconia nano-powders and compacts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 380, 349-355.	2.6	62
254	Development of piezoelectric micromachined ultrasonic transducers. Sensors and Actuators A: Physical, 2004, 111, 275-287.	2.0	210
255	Growth and characterization of single-crystal lead magnesium niobate–lead titanate via high-pressure vertical Bridgman method. , 2004, 19, 609.		2
256	Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Materials Science and Engineering C, 2003, 23, 479-486.	3.8	133
257	Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science and Engineering C, 2003, 23, 611-620.	3.8	414
258	From CT Scan to Ceramic Bone Graft. Journal of the American Ceramic Society, 2003, 86, 1076-1080.	1.9	43
259	Layered lead zirconate titanate and lanthanum-doped lead zirconate titanate ceramic thin films. Journal of Materials Research, 2002, 17, 2379-2385.	1.2	14
260	Optimization of PZT-based MEMS. Materials Research Society Symposia Proceedings, 2002, 729, 241.	0.1	0
261	Mechanical Properties of Boron Doped Si and Si/SiO 2 Membranes. Materials Research Society Symposia Proceedings, 2002, 729, 3121.	0.1	2
262	Porous calcium aluminate ceramics for bone-graft applications. Journal of Materials Research, 2002, 17, 3042-3049.	1.2	31
263	Processing and characterization of porous alumina scaffolds. Journal of Materials Science: Materials in Medicine, 2002, 13, 23-28.	1.7	93
264	Calcium Carbonate Reinforced Natural Polymer Composite For Bone Grafts. Materials Research Society Symposia Proceedings, 2002, 724, N8.18.1.	0.1	1
265	Porous Mullite Preforms via Fused Deposition. Journal of the American Ceramic Society, 2001, 84, 221-223.	1.9	49
266	Processing of Mullite–Aluminum Composites. Journal of the American Ceramic Society, 2001, 84, 509-513.	1.9	38
267	Nanocrystalline αâ€Al ₂ O ₃ Using Sucrose. Journal of the American Ceramic Society, 2001, 84, 2421-2423.	1.9	63
268	Modeling of multiple pore ceramic materials fabricated via fused deposition process. Scripta Materialia, 2000, 42, 581-588.	2.6	18
269	Effects of processing history on thermal debinding. Journal of Materials Science, 2000, 35, 3983-3988.	1.7	17
270	Strength Degradation of Nonrandom Porous Ceramic Structures under Uniaxial Compressive Loading. Journal of the American Ceramic Society, 2000, 83, 2730-2736.	1.9	52

AMIT BANDYOPADHYAY

#	Article	IF	CITATIONS
271	Processing of controlled porosity ceramic structures via fused deposition. Scripta Materialia, 1999, 41, 1009-1014.	2.6	74
272	Development of a binder formulation for fused deposition of ceramics. Rapid Prototyping Journal, 1998, 4, 144-150.	1.6	82
273	Piezoelectric ceramics and composites via rapid prototyping techniques. Rapid Prototyping Journal, 1998, 4, 37-49.	1.6	44
274	Development of fine-scale piezoelectric composites for transducers. AICHE Journal, 1997, 43, 2849-2856.	1.8	35
275	Processing of Piezocomposites by Fused Deposition Technique. Journal of the American Ceramic Society, 1997, 80, 1366-1372.	1.9	85
276	Kinetics of in-situ α to β Si3N4 transformation in a barium aluminosilicate matrix. Scripta Metallurgica Et Materialia, 1995, 32, 1417-1422.	1.0	16
277	Interfacial stability, oxidation response and mechanical properties of a Nicalonâ,,¢ Fibre reinforced chemical bonded ceramic matrix composite. Journal of Materials Science, 1994, 29, 4205-4215.	1.7	16
278	Influence of hydrogen charging on mechanical properties of gas tungsten arc weldments of aluminium-lithium alloy 8090. Journal of Materials Science, 1994, 29, 1203-1212.	1.7	5
279	Effect of heat treatment environment on Li depletion and on mechanical properties in Al-Li alloy sheets. Journal of Materials Science, 1993, 28, 6340-6346.	1.7	10
280	Strain localization behaviour of Al-Cu and Al-Li-Cu-Mg-Zr alloys due to cathodic charging. Journal of Materials Science Letters, 1993, 12, 555-557.	0.5	0
281	Effect of hydrogen charging on the mechanical properties of medium strength aluminium alloys 2091 and 2014. Bulletin of Materials Science, 1992, 15, 311-319.	0.8	6
282	Niobium carbide reinforcedâ€Ti6Al4V composites via directed energy deposition. International Journal of Applied Ceramic Technology, 0, , .	1.1	1