
Feitian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7656340/publications.pdf Version: 2024-02-01

Εγιτιανί Ζη

#	Article	IF	CITATIONS
1	Two degree-of-freedom robotic eye: design, modeling, and learning-based control in foveation and smooth pursuit. Bioinspiration and Biomimetics, 2021, 16, 046022.	2.9	7
2	DMD-Based Background Flow Sensing for AUVs in Flow Pattern Changing Environments. IEEE Robotics and Automation Letters, 2021, 6, 5207-5214.	5.1	9
3	Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers. Frontiers in Robotics and Al, 2021, 8, 809427.	3.2	5
4	Background Flow Sensing for Autonomous Underwater Vehicles Using Model Reduction with Dynamic Mode Decomposition. , 2020, , .		2
5	A Novel FFT-Assisted Background Flow Sensing Framework for Autonomous Underwater Vehicles In Dynamic Environment with Changing Flow Patterns. , 2020, , .		Ο
6	Distributed Flow Estimation for Autonomous Underwater Robots Using Proper Orthogonal Decomposition-Based Model Reduction. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2019, 141, .	1.6	6
7	Distributed Flow Estimation for Autonomous Underwater Robots Using POD-Based Model Reduction. , 2018, , .		4
8	DMD-Based Distributed Flow Sensing for Bio-Inspired Autonomous Underwater Robots. , 2018, , .		3
9	Learning Based Speed Control of Soft Robotic Fish. , 2018, , .		7
10	Foveation Control of a Robotic Eye Using Deep Reinforcement Learning. , 2018, , .		2
11	Developing a Novel Robotic Fish With Antagonistic Artificial Muscle Actuators. , 2017, , .		6
12	Identification of Hydrodynamic Coefficients of a Robotic Fish Using Improved Extended Kalman Filter. , 2017, , .		6
13	Gliding Robotic Fish: An Underwater Sensing Platform and Its Spiral-Based Tracking in 3D Space. Marine Technology Society Journal, 2017, 51, 71-78.	0.4	5
14	Robotic Fish. Mechanical Engineering, 2016, 138, S2-S5.	0.1	7
15	Predictive control based target tracking control for a carangiform robotic fish. , 2016, , .		0
16	A flexible, reaction-wheel-driven fish robot: Flow sensing and flow-relative control. , 2016, , .		13
17	Autonomous Sampling of Water Columns Using Gliding Robotic Fish: Algorithms and Harmful-Algae-Sampling Experiments. IEEE Systems Journal, 2016, 10, 1271-1281.	4.6	80
18	Autonomous sampling of water columns using gliding robotic fish: Control algorithms and field		8

experiments., 2015,,.

Feitian Zhang

#	Article	IF	CITATIONS
19	Distributed Flow Sensing Using Bayesian Estimation for a Flexible Fish Robot. , 2015, , .		2
20	Distributed flow sensing for closed-loop speed control of a flexible fish robot. Bioinspiration and Biomimetics, 2015, 10, 065001.	2.9	34
21	Passivity-Based Stabilization of Underwater Gliders With a Control Surface. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2015, 137, .	1.6	13
22	Tail-Enabled Spiraling Maneuver for Gliding Robotic Fish. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2014, 136, .	1.6	28
23	Nonlinear observer design for stabilization of gliding robotic fish. , 2014, , .		7
24	Miniature Underwater Glider: Design and Experimental Results. IEEE/ASME Transactions on Mechatronics, 2014, 19, 394-399.	5.8	61
25	Gliding robotic fish for mobile sampling of aquatic environments. , 2014, , .		11
26	Three-dimensional spiral tracking control for gliding robotic fish. , 2014, , .		5
27	Design and development of an LED-based optical communication system for autonomous underwater robots. , 2013, , .		16
28	Gliding Robotic Fish and its Tail-Enabled Yaw Motion Stabilization Using Sliding Mode Control. , 2013, ,		12
29	Miniature underwater glider: Design, modeling, and experimental results. , 2012, , .		22
30	Steady spiraling motion of gliding robotic fish. , 2012, , .		15
31	Passivity-based controller design for stablization of underwater gliders. , 2012, , .		6
32	Localization of source with unknown amplitude using IPMC sensor arrays. Proceedings of SPIE, 2011, , .	0.8	4