
Amarajothi Dhakshinamoorthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7655924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Doped microporous graphitic carbons as metal-free catalysts for the selective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2022, 405, 355-362.	6.2	8
2	Friedel-Crafts alkylation reaction efficiently catalyzed by a di-amide functionalized Zr(IV) metal-organic framework. Molecular Catalysis, 2022, 517, 112007.	2.0	6
3	Detecting Lewis acid sites in metal-organic frameworks by density functional theory. Molecular Catalysis, 2022, 517, 112042.	2.0	7
4	Supported metals on porous solids as heterogeneous catalysts for the synthesis of propargylamines. New Journal of Chemistry, 2022, 46, 1469-1482.	2.8	4
5	A Quasi-Metal–Organic Framework Based on Cobalt for Improved Catalytic Conversion of Aquatic Pollutant 4-Nitrophenol. Journal of Physical Chemistry C, 2022, 126, 683-692.	3.1	18
6	Two birds with one arrow: a functionalized Al(<scp>iii</scp>) MOF acts as a fluorometric sensor of dopamine in bio-fluids and a recyclable catalyst for the Biginelli reaction. Journal of Materials Chemistry C, 2022, 10, 6717-6727.	5.5	21
7	Diamino group-functionalized Zr-based metal–organic framework for fluorescence sensing of free chlorine in the aqueous phase and Knoevenagel condensation. Dalton Transactions, 2022, 51, 6964-6975.	3.3	14
8	Remarkable Activity of 002 Facet of Ruthenium Nanoparticles Grown on Graphene Films on the Photocatalytic CO ₂ Methanation. Advanced Sustainable Systems, 2022, 6, .	5.3	7
9	Tridimensional N, P-Codoped Carbon Sponges as Highly Selective Catalysts for Aerobic Oxidative Coupling of Benzylamine. ACS Omega, 2022, 7, 11092-11100.	3.5	5
10	Recent Progress and Prospects in Catalytic Water Treatment. Chemical Reviews, 2022, 122, 2981-3121.	47.7	139
11	Porphyrin Catecholate Iron-Based Metal–Organic Framework for Efficient Visible Light-Promoted One-Pot Tandem C–C Couplings. ACS Sustainable Chemistry and Engineering, 2022, 10, 5315-5322.	6.7	22
12	Shaping MOF oxime oxidation catalysts as three-dimensional porous aerogels through structure-directing growth inside chitosan microspheres. Green Chemistry, 2022, 24, 4533-4543.	9.0	16
13	Tuning the Photocatalytic Activity of Ti-Based Metal–Organic Frameworks through Modulator Defect-Engineered Functionalization. ACS Applied Materials & Interfaces, 2022, 14, 21007-21017.	8.0	17
14	Arene borylation through C H activation using Cu3(BTC)2 as heterogeneous catalyst. Catalysis Today, 2021, 366, 212-217.	4.4	6
15	Pristine and modified chitosan as solid catalysts for catalysis and biodiesel production: A minireview. International Journal of Biological Macromolecules, 2021, 167, 807-833.	7.5	27
16	Bifunctional metal–organic frameworks for the hydrogenation of nitrophenol using methanol as the hydrogen source. Organic and Biomolecular Chemistry, 2021, 19, 794-800.	2.8	5
17	Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 11148-11167.	2.0	12
18	UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. Molecular Catalysis, 2021, 499, 111277.	2.0	22

#	Article	IF	CITATIONS
19	Straightforward synthesis of a porous chromium-based porphyrinic metal-organic framework for visible-light triggered selective aerobic oxidation of benzyl alcohol to benzaldehyde. Applied Catalysis A: General, 2021, 611, 117965.	4.3	27
20	Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 11048-11067.	13.8	179
21	Cobalt-Based Metal Organic Frameworks as Solids Catalysts for Oxidation Reactions. Catalysts, 2021, 11, 95.	3.5	12
22	Photocatalysis by metal-organic frameworks. , 2021, , 543-559.		1
23	High hydrogen release catalytic activity by quasi-MOFs prepared <i>via</i> post-synthetic pore engineering. Sustainable Energy and Fuels, 2021, 5, 4587-4596.	4.9	8
24	Microporous 3D graphitic carbons obtained by soft templating as carbocatalysts for aerobic oxidation. Applied Catalysis A: General, 2021, 612, 118014.	4.3	3
25	Metal-Organic Frameworks as Versatile Heterogeneous Solid Catalysts for Henry Reactions. Molecules, 2021, 26, 1445.	3.8	29
26	A Zr-Based Metal–Organic Framework with a DUT-52 Structure Containing a Trifluoroacetamido-Functionalized Linker for Aqueous Phase Fluorescence Sensing of the Cyanide Ion and Aerobic Oxidation of Cyclohexane. Inorganic Chemistry, 2021, 60, 4539-4550.	4.0	26
27	Engineering of Active Sites in Metal–Organic Frameworks for Biodiesel Production. Advanced Sustainable Systems, 2021, 5, 2100101.	5.3	23
28	Copper(II)â€Doped ZIFâ€8 as a Reusable and Size Selective Heterogeneous Catalyst for the Hydrogenation of Alkenes using Hydrazine Hydrate. European Journal of Inorganic Chemistry, 2021, 2021, 2108-2119.	2.0	13
29	α,β-Enone Borylation by Bis(Pinacolato)Diboron Catalyzed by Cu3(BTC)2 Using Cesium Carbonate as a Base. Nanomaterials, 2021, 11, 1396.	4.1	2
30	Amino Group Functionalized Hfâ€Based Metalâ€Organic Framework for Knoevenagelâ€Đoebner Condensation. European Journal of Inorganic Chemistry, 2021, 2021, 3396-3403.	2.0	8
31	Challenges and Opportunities for the Encapsulation of Enzymes over Porous Solids for Biodiesel Production and Cellulose Valorization into Glucose. ChemCatChem, 2021, 13, 4679-4693.	3.7	12
32	Reduced Graphene Oxides as Carbocatalysts in Acceptorless Dehydrogenation of <i>N</i> -Heterocycles. ACS Catalysis, 2021, 11, 14688-14693.	11.2	15
33	Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. Journal of Colloid and Interface Science, 2020, 560, 885-893.	9.4	18
34	Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications, 2020, 56, 26-45.	4.1	47
35	Knoevenagel-Doebner condensation promoted by chitosan as a reusable solid base catalyst. Molecular Catalysis, 2020, 484, 110744.	2.0	18
36	MIL-101(Fe) as an active heterogeneous solid acid catalyst for the regioselective ring opening of epoxides by indoles. Molecular Catalysis, 2020, 482, 110628.	2.0	9

#	Article	IF	CITATIONS
37	Green energy from Coelastrella sp. M-60: Bio-nanoparticles mediated whole biomass transesterification for biodiesel production. Fuel, 2020, 279, 118490.	6.4	14
38	Tuning the active sites in reduced graphene oxide by hydroquinone functionalization for the aerobic oxidations of thiophenol and indane. Molecular Catalysis, 2020, 493, 111093.	2.0	4
39	C N formation reactions in water. , 2020, , 231-254.		Ο
40	A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. CheM, 2020, 6, 3409-3427.	11.7	41
41	Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. Journal of Catalysis, 2020, 390, 135-149.	6.2	5
42	Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem, 2020, 12, 4732-4753.	3.7	61
43	Plasmaâ€Induced Defects Enhance the Visibleâ€Light Photocatalytic Activity of MILâ€125(Ti)â€NH ₂ for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 15682-15689.	3.3	35
44	Goldâ€Nanoparticleâ€Decorated Metalâ€Organic Frameworks for Anticancer Therapy. ChemMedChem, 2020, 15, 2236-2256.	3.2	8
45	A Pyridyltriazol Functionalized Zirconium Metal–Organic Framework for Selective and Highly Efficient Adsorption of Palladium. ACS Applied Materials & Interfaces, 2020, 12, 25221-25232.	8.0	107
46	Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 3638-3687.	38.1	176
47	Bimetallic iron-copper oxide nanoparticles supported on nanometric diamond as efficient and stable sunlight-assisted Fenton photocatalyst. Chemical Engineering Journal, 2020, 393, 124770.	12.7	31
48	Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials, 2020, 3, 6623-6632.	5.1	10
49	A hydrazine functionalized UiO-66(Hf) metal–organic framework for the synthesis of quinolines via Friedläder condensation. New Journal of Chemistry, 2020, 44, 10982-10988.	2.8	13
50	Metal–Organic Frameworks as Multifunctional Solid Catalysts. Trends in Chemistry, 2020, 2, 454-466.	8.5	120
51	Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis. Dalton Transactions, 2020, 49, 11059-11072.	3.3	31
52	Chitosan as a biodegradable heterogeneous catalyst for Knoevenagel condensation between benzaldehydes and cyanoacetamide. Catalysis Communications, 2020, 138, 105954.	3.3	37
53	Influence of oxophilic behavior of UiOâ€66(Ce) metal–organic framework with superior catalytic performance in Friedelâ€Crafts alkylation reaction. Applied Organometallic Chemistry, 2020, 34, e5578.	3.5	20
54	Templateless Synthesis of Ultraâ€Microporous 3D Graphitic Carbon from Cyclodextrins and Their Use as Selective Catalyst for Oxygen Activation. Small Methods, 2020, 4, 1900721.	8.6	10

#	Article	IF	CITATIONS
55	Influence of Hydrogen Bond Donating Sites in UiOâ€66 Metalâ€Organic Framework for Highly Regioselective Methanolysis of Epoxides. ChemCatChem, 2020, 12, 1789-1798.	3.7	27
56	Diamond Nanoparticles in Heterogeneous Catalysis. Chemistry of Materials, 2020, 32, 4116-4143.	6.7	23
57	Highly Active Bisamino Functionalized Zr(IV)â€UiOâ€67 Metalâ€Organic Framework for Cascade Catalysis. European Journal of Inorganic Chemistry, 2020, 2020, 2830-2834.	2.0	15
58	Catalysis by Metal Nanoparticles Encapsulated Within Metal–Organic Frameworks. Molecular Catalysis, 2020, , 221-247.	1.3	0
59	Nâ€Doped Defective Graphene from Biomass as Catalyst for CO ₂ Hydrogenation to Methane. ChemCatChem, 2019, 11, 985-990.	3.7	39
60	2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Advanced Materials, 2019, 31, e1900617.	21.0	309
61	Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu ₂ 0 nanoparticles for CO ₂ methanation. Chemical Communications, 2019, 55, 10932-10935.	4.1	34
62	Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs. Journal of Materials Chemistry A, 2019, 7, 20285-20292.	10.3	69
63	Acetylation of Alcohols, Amines, Phenols, Thiols under Catalyst and Solvent-Free Conditions. Chemistry, 2019, 1, 69-79.	2.2	19
64	Cu3(BTC)2 metal organic framework as heterogeneous solid catalyst for the reduction of styrenes with silane as reducing agent. Inorganica Chimica Acta, 2019, 496, 119026.	2.4	4
65	Longâ€Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 17843-17848.	13.8	40
66	Longâ€Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 18007-18012.	2.0	14
67	Encapsulation of Metal Nanoparticles within Metal–Organic Frameworks for the Reduction of Nitro Compounds. Molecules, 2019, 24, 3050.	3.8	17
68	Engineering Active Sites in Reduced Graphene Oxide: Tuning the Catalytic Activity for Aerobic Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15948-15956.	6.7	15
69	Catalytic Ozonation Using Edge-Hydroxylated Graphite-Based Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 17443-17452.	6.7	18
70	A Versatile, Mild and Selective Reduction of Nitroarenes to Aminoarenes Catalyzed by CeO ₂ Nanoparticles with Hydrazine Hydrate. ChemistrySelect, 2019, 4, 1379-1386.	1.5	19
71	Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Advances, 2019, 9, 99-106.	3.6	20
72	A simple and efficient room temperature silylation of diverse functional groups with hexamethyldisilazane using CeO2 nanoparticles as solid catalysts. Molecular Catalysis, 2019, 474, 110357.	2.0	3

AMARAJOTHI

#	Article	IF	CITATIONS
73	Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MILâ€101(Cr) for the Selective Oxidation of Alcohols with O ₂ : Influence of the Amino Terephthalate Linker. Chemistry - A European Journal, 2019, 25, 9280-9286.	3.3	15
74	A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous and Mesoporous Materials, 2019, 284, 459-467.	4.4	47
75	Highly Active Urea-Functionalized Zr(IV)-UiO-67 Metal–Organic Framework as Hydrogen Bonding Heterogeneous Catalyst for Friedel–Crafts Alkylation. Inorganic Chemistry, 2019, 58, 5163-5172.	4.0	51
76	Mixedâ€Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie, 2019, 131, 15330-15347.	2.0	124
77	Mixedâ€Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie - International Edition, 2019, 58, 15188-15205.	13.8	493
78	A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation. Dalton Transactions, 2019, 48, 17371-17380.	3.3	40
79	A Cu-Doped ZIF-8 metal organic framework as a heterogeneous solid catalyst for aerobic oxidation of benzylic hydrocarbons. New Journal of Chemistry, 2019, 43, 18702-18712.	2.8	42
80	A Thiophene-2-carboxamide-Functionalized Zr(IV) Organic Framework as a Prolific and Recyclable Heterogeneous Catalyst for Regioselective Ring Opening of Epoxides. Inorganic Chemistry, 2019, 58, 16581-16591.	4.0	16
81	3D defective graphenes with subnanometric porosity obtained by soft-templating following zeolite procedures. Nanoscale Advances, 2019, 1, 4827-4833.	4.6	5
82	Formation of C–C and C–Heteroatom Bonds by C–H Activation by Metal Organic Frameworks as Catalysts or Supports. ACS Catalysis, 2019, 9, 1081-1102.	11.2	99
83	Phosphorus-Doped Graphene as a Metal-Free Material for Thermochemical Water Reforming at Unusually Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 838-846.	6.7	28
84	Engineering UiOâ€66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 2019, 11, 899-923.	3.7	182
85	Photoassisted CO ₂ Conversion to Fuels. ChemCatChem, 2019, 11, 342-356.	3.7	41
86	Liquid phase aerobic oxidation of cyclic and linear hydrocarbons using iron metal organic frameworks as solid heterogeneous catalyst. Molecular Catalysis, 2019, 463, 54-60.	2.0	17
87	General aspects in the use of graphenes in catalysis. Materials Horizons, 2018, 5, 363-378.	12.2	49
88	Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine. Catalysis Science and Technology, 2018, 8, 1589-1598.	4.1	13
89	Oxidation of styrene using TiO2-graphene oxide composite as solid heterogeneous catalyst with hydroperoxide as oxidant. Catalysis Communications, 2018, 108, 41-45.	3.3	15
90	Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale, 2018, 10, 4391-4397.	5.6	19

#	Article	IF	CITATIONS
91	Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template. ACS Catalysis, 2018, 8, 1779-1789.	11.2	40
92	Iron oxide nanoparticles supported on diamond nanoparticles as efficient and stable catalyst for the visible light assisted Fenton reaction. Applied Catalysis B: Environmental, 2018, 226, 242-251.	20.2	47
93	Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 2018, 20, 2611-2623.	9.0	21
94	Cu3(BTC)2 metal-organic framework catalyzed N-arylation of benzimidazoles and imidazoles with phenylboronic acid. Journal of Industrial and Engineering Chemistry, 2018, 65, 120-126.	5.8	20
95	Reduction of Câ•C Double Bonds by Hydrazine Using Active Carbons as Metal-Free Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 5607-5614.	6.7	23
96	Metal organic frameworks as solid promoters for aerobic autoxidations. Catalysis Today, 2018, 306, 2-8.	4.4	19
97	<i>N</i> â€Hydroxyphthalimide Anchored on Diamond Nanoparticles as a Selective Heterogeneous Metalâ€free Oxidation Catalyst of Benzylic Hydrocarbons and Cyclic Alkenes by Molecular O ₂ . ChemCatChem, 2018, 10, 198-205.	3.7	27
98	Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20, 86-107.	9.0	107
99	Regioselective ring opening of styrene oxide by carbon nucleophiles catalyzed by metal–organic frameworks under solvent-free conditions. Journal of Industrial and Engineering Chemistry, 2018, 58, 9-17.	5.8	14
100	Aerobic Oxidation of Benzylic Hydrocarbons by Ironâ€Based Metal Organic Framework as Solid Heterogeneous Catalyst. ChemistrySelect, 2018, 3, 12155-12162.	1.5	5
101	Aerobic Oxidation of Alcohols Catalyzed by V ₂ O ₅ Rods Decorated on Graphene Oxide. ChemistrySelect, 2018, 3, 12725-12733.	1.5	5
102	Synthesis, Transformation, Catalysis, and Cas Sorption Investigations on the Bismuth Metal–Organic Framework CAUâ€17. European Journal of Inorganic Chemistry, 2018, 2018, 3496-3503.	2.0	57
103	Construction of a Stable Ru–Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2018, 57, 8276-8286.	4.0	98
104	Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 2018, 365, 450-463.	6.2	29
105	Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47, 8134-8172.	38.1	1,119
106	Heterogeneous catalysis based on supramolecular association. Catalysis Science and Technology, 2018, 8, 4834-4857.	4.1	13
107	Knoevenagel condensation reaction catalysed by Al-MOFs with CAU-1 and CAU-10-type structures. CrystEngComm, 2017, 19, 4187-4193.	2.6	92
108	Enhanced Activity of Ag Nanoplatelets on Few Layers of Graphene Film with Preferential Orientation for Dehydrogenative Silane–Alcohol Coupling. ACS Sustainable Chemistry and Engineering, 2017, 5, 2400-2406.	6.7	11

#	Article	IF	CITATIONS
109	Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science and Technology, 2017, 7, 1351-1362.	4.1	28
110	Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 2017, 7, 2896-2919.	11.2	184
111	Influence of Terephthalic Acid Substituents on the Catalytic Activity of MILâ€101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 2017, 9, 2506-2511.	3.7	44
112	Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts. Green Chemistry, 2017, 19, 3061-3068.	9.0	22
113	Visible Light Induced Organic Transformations Using Metalâ€Organicâ€Frameworks (MOFs). Chemistry - A European Journal, 2017, 23, 11189-11209.	3.3	176
114	Cu3(BTC)2 catalyzed dehydrogenative coupling of dimethylphenylsilane with phenol and homocoupling of dimethylphenylsilane to disiloxane. Journal of Colloid and Interface Science, 2017, 490, 430-435.	9.4	16
115	Room temperature silylation of alcohols catalyzed by metal organic frameworks. Catalysis Science and Technology, 2017, 7, 2445-2449.	4.1	9
116	Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials. Chemistry - A European Journal, 2017, 23, 15244-15275.	3.3	39
117	Oriented Au nanoplatelets on graphene promote Suzuki-Miyaura coupling with higher efficiency and different reactivity pattern than supported palladium. Journal of Catalysis, 2017, 352, 59-66.	6.2	16
118	Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 2017, 46, 4501-4529.	38.1	273
119	Visible-light-induced tandem reaction of o -aminothiophenols and alcohols to benzothiazoles over Fe-based MOFs: Influence of the structure elucidated by transient absorption spectroscopy. Journal of Catalysis, 2017, 349, 156-162.	6.2	59
120	Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH ₂ –UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. Journal of Physical Chemistry C, 2017, 121, 7015-7024.	3.1	116
121	Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative Câ^'N Coupling of Aromatic Nâ^'H Compounds and Amides. ChemCatChem, 2017, 9, 3003-3012.	3.7	14
122	HKUST-1 catalyzed room temperature hydrogenation of acetophenone by silanes. Catalysis Communications, 2017, 97, 74-78.	3.3	12
123	Graphenes as Metal-Free Catalysts with Engineered Active Sites. Journal of Physical Chemistry Letters, 2017, 8, 264-278.	4.6	45
124	Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chemical Communications, 2017, 53, 10851-10869.	4.1	94
125	A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 2017, 19, 5915-5925.	2.6	101
126	Cu 3 (BTC) 2 catalyzed oxidation of silane to silanol using TBHP or water as oxidants. Applied Catalysis A: General, 2017, 544, 145-153.	4.3	17

#	Article	IF	CITATIONS
127	Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu ₃ (BTC) ₂ as a solid catalyst. Chemical Communications, 2017, 53, 9998-10001.	4.1	21
128	Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction. Journal of Colloid and Interface Science, 2017, 485, 75-80.	9.4	91
129	Metal–Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 2016, 22, 8012-8024.	3.3	132
130	Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie - International Edition, 2016, 55, 5414-5445.	13.8	888
131	Oneâ€6tep Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 607-612.	13.8	37
132	Graphene from Alginate Pyrolysis as a Metalâ€Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 2016, 9, 1565-1569.	6.8	62
133	Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science and Technology, 2016, 6, 5238-5261.	4.1	198
134	Cu3(BTC)2 as heterogeneous catalyst for the room temperature oxidative hydroxylation of arylboronic acids. Tetrahedron, 2016, 72, 2895-2899.	1.9	17
135	A highly stable dimethyl-functionalized Ce(<scp>iv</scp>)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm, 2016, 18, 7855-7864.	2.6	80
136	Dyes decolorization using silver nanoparticles supported on nanometric diamond as highly efficient photocatalyst under natural Sunlight irradiation. Journal of Environmental Chemical Engineering, 2016, 4, 4485-4493.	6.7	12
137	Reduced Graphene Oxide as a Metalâ€Free Catalyst for the Lightâ€Assisted Fentonâ€Like Reaction. ChemCatChem, 2016, 8, 2642-2648.	3.7	46
138	Influence of functionalization of terephthalate linker on the catalytic activity of UiO-66 for epoxide ring opening. Journal of Molecular Catalysis A, 2016, 425, 332-339.	4.8	58
139	Metallâ€organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 2016, 128, 5504-5535.	2.0	87
140	Copper nanoparticles supported on diamond nanoparticles as a cost-effective and efficient catalyst for natural sunlight assisted Fenton reaction. Catalysis Science and Technology, 2016, 6, 7077-7085.	4.1	20
141	Enhancement of CO ₂ Adsorption and Catalytic Properties by Fe-Doping of [Ga ₂ (OH) ₂ (L)] (H ₄ L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga ₂). Inorganic Chemistry, 2016, 55, 1076-1088.	4.0	70
142	Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2. Chemical Communications, 2016, 52, 2725-2728.	4.1	30
143	Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 2016, 312, 99-148.	18.8	270
144	Graphene oxide as a metal-free catalyst for oxidation of primary amines to nitriles by hypochlorite. Chemical Communications, 2016, 52, 1839-1842.	4.1	42

#	Article	IF	CITATIONS
145	MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 2016, 18, 508-515.	9.0	128
146	Graphenes as Efficient Metalâ€Free Fenton Catalysts. Chemistry - A European Journal, 2015, 21, 11966-11971.	3.3	87
147	Titanium Dioxide/Graphene Oxide Nanocomposites as Heterogeneous Catalysts for the Esterification of Benzoic Acid with Dimethyl Carbonate. ChemPlusChem, 2015, 80, 1472-1477.	2.8	4
148	Silver Nanoparticles Supported on Diamond Nanoparticles as a Highly Efficient Photocatalyst for the Fenton Reaction under Natural Sunlight Irradiation. ChemCatChem, 2015, 7, 2682-2688.	3.7	28
149	Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives. Microporous and Mesoporous Materials, 2015, 202, 297-302.	4.4	13
150	Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 2015, 65, 10-13.	3.3	45
151	Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 2015, 44, 1922-1947.	38.1	348
152	Palladium nanoparticles supported on graphene as catalysts for the dehydrogenative coupling of hydrosilanes and amines. Catalysis Science and Technology, 2015, 5, 2167-2173.	4.1	27
153	Boron Nitride Nanoplatelets as a Solid Radical Initiator for the Aerobic Oxidation of Thiophenol to Diphenyldisulfide. ChemCatChem, 2015, 7, 776-780.	3.7	12
154	Doped graphenes in catalysis. Journal of Molecular Catalysis A, 2015, 408, 296-309.	4.8	70
155	MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 2015, 5, 3216-3224.	11.2	100
156	Deactivation of Cu3(BTC)2 in the Synthesis of 2-Phenylquinoxaline. Catalysis Letters, 2015, 145, 1600-1605.	2.6	20
157	High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 2015, 6, 8561.	12.8	63
158	Graphenes as Metalâ€free Catalysts for the Oxidative Depolymerization of Lignin Models. ChemCatChem, 2015, 7, 3020-3026.	3.7	27
159	Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols. Angewandte Chemie - International Edition, 2014, 53, 12581-12586.	13.8	33
160	One-pot synthesis of 2-substituted quinoxalines using K10-montmorillonite as heterogeneous catalyst. Tetrahedron Letters, 2014, 55, 1616-1620.	1.4	37
161	K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catalysis Science and Technology, 2014, 4, 2378-2396.	4.1	156
162	High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 2014, 68, 777-783.	10.3	78

AMARAJOTHI

#	Article	IF	CITATIONS
163	Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chemical Society Reviews, 2014, 43, 5750-5765.	38.1	427
164	Nâ€Doped Graphene Derived from Biomass as a Visibleâ€Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 2014, 20, 187-194.	3.3	136
165	Michael addition of indoles to β-nitrostyrenes catalyzed by HY zeolite under solvent-free conditions. Tetrahedron Letters, 2014, 55, 2061-2064.	1.4	27
166	Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 2014, 114, 6179-6212.	47.7	595
167	Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 2014, 5, 5291.	12.8	208
168	Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 2014, 7, 2392-2410.	6.8	164
169	One-Pot Synthesis of Propargylamines Using Ag(I)-Exchanged K10 Montmorillonite Clay as Reusable Catalyst in Water. ACS Sustainable Chemistry and Engineering, 2014, 2, 781-787.	6.7	60
170	Catalysis by metal–organic frameworks in water. Chemical Communications, 2014, 50, 12800-12814.	4.1	117
171	Oxidative hydroxylation of arylboronic acids to phenols catalyzed by copper nanoparticles ellagic acid composite. Journal of Molecular Catalysis A, 2014, 395, 500-505.	4.8	44
172	Doped Graphene as a Metalâ€Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 2013, 19, 7547-7554.	3.3	138
173	Polymer―and Ionic Liquidâ€Containing Palladium: Recoverable Soluble Crossâ€Coupling Catalysts. ChemCatChem, 2013, 5, 3460-3480.	3.7	39
174	Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science and Technology, 2013, 3, 2509.	4.1	270
175	Amino acid intercalated layered double hydroxide catalyzed chemoselective methylation of phenols and thiophenols with dimethyl carbonate. Tetrahedron Letters, 2013, 54, 7167-7170.	1.4	30
176	Influence of pretreatments on commercial diamond nanoparticles on the photocatalytic activity of supported gold nanoparticles under natural Sunlight irradiation. Applied Catalysis B: Environmental, 2013, 142-143, 259-267.	20.2	27
177	Airâ€6table, Dinuclear and Tetranuclear σ,Ï€â€Acetylide Gold(I) Complexes and Their Catalytic Implications. Chemistry - A European Journal, 2013, 19, 12239-12244.	3.3	50
178	Synthesis of 2-substituted 3-ethyl-3H-imidazo[4,5-b]pyridines catalyzed by Al3+-exchanged K10 clay as solid acids. Tetrahedron Letters, 2013, 54, 6479-6484.	1.4	9
179	A green route for the synthesis of 2-substituted benzoxazole derivatives catalyzed by Al3+-exchanged K10 clay. Tetrahedron Letters, 2013, 54, 6415-6419.	1.4	21
180	Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catalysis Science and Technology, 2013, 3, 500-507.	4.1	179

#	Article	IF	CITATIONS
181	Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles. ChemCatChem, 2013, 5, 241-246.	3.7	44
182	Photocatalytic CO ₂ Reduction using Nonâ€ītitanium Metal Oxides and Sulfides. ChemSusChem, 2013, 6, 562-577.	6.8	282
183	Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles. Chemical Communications, 2013, 49, 2359.	4.1	53
184	Metal Organic Frameworks as Solid Catalysts in Condensation Reactions of Carbonyl Groups. Advanced Synthesis and Catalysis, 2013, 355, 247-268.	4.3	97
185	Superior Performance of Fe(BTC) With Respect to Other Metalâ€Containing Solids in the <i>N</i> â€Hydroxyphthalimideâ€Promoted Heterogeneous Aerobic Oxidation of Cycloalkanes. ChemCatChem, 2013, 5, 1964-1970.	3.7	19
186	Deactivation Pathways of the Catalytic Activity of Metal–Organic Frameworks in Condensation Reactions. ChemCatChem, 2013, 5, 1553-1561.	3.7	52
187	Superior Performance of Metal–Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 2013, 6, 865-871.	6.8	63
188	Catalytic activity of unsupported gold nanoparticles. Catalysis Science and Technology, 2013, 3, 58-69.	4.1	212
189	Influence of Hydrogen Annealing on the Photocatalytic Activity of Diamond-Supported Gold Catalysts. ACS Applied Materials & Interfaces, 2013, 5, 7160-7169.	8.0	31
190	Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature. ChemCatChem, 2012, 4, 2026-2030.	3.7	62
191	Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2012, 2, 2060-2065.	11.2	213
192	lron(<scp>iii</scp>) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catalysis Science and Technology, 2012, 2, 324-330.	4.1	197
193	Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy and Environmental Science, 2012, 5, 9217.	30.8	501
194	Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 2012, 48, 11275.	4.1	378
195	From Biomass Wastes to Highly Efficient CO ₂ Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 2012, 5, 2207-2214.	6.8	93
196	Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3â^² = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites. Journal of Materials Chemistry, 2012, 22, 10200.	6.7	75
197	From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 2012, 48, 9254.	4.1	253
198	Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chemical Communications, 2012, 48, 5443.	4.1	180

#	Article	IF	CITATIONS
199	Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 2012, 41, 5262.	38.1	929
200	Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 2012, 112, 4469-4506.	47.7	741
201	Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 2012, 289, 259-265.	6.2	105
202	Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 2012, 5, 46-64.	6.8	254
203	Titania supported gold nanoparticles as photocatalyst. Physical Chemistry Chemical Physics, 2011, 13, 886-910.	2.8	652
204	Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metalâ^'Organic Frameworks Assisted by TEMPO. ACS Catalysis, 2011, 1, 48-53.	11.2	229
205	Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 2011, 12, 1018-1021.	3.3	44
206	Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by Light. Journal of the American Chemical Society, 2011, 133, 2218-2226.	13.7	235
207	Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Cold Supported on Nanoparticulate CeO ₂ Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 2011, 133, 6930-6933.	13.7	428
208	Clay encapsulated ZnO nanoparticles as efficient catalysts for N-benzylation of amines. Catalysis Communications, 2011, 16, 15-19.	3.3	40
209	Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Transactions, 2011, 40, 10719.	3.3	79
210	Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 2011, 40, 6344.	3.3	147
211	Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science and Technology, 2011, 1, 856.	4.1	281
212	Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 2011, 1, 836-840.	11.2	104
213	Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. ChemSusChem, 2011, 4, 1712-1730.	6.8	177
214	Atmosphericâ€Pressure, Liquidâ€Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry - A European Journal, 2011, 17, 6256-6262.	3.3	70
215	Stereoselective Single (Copper) or Double (Platinum) Boronation of Alkynes Catalyzed by Magnesiaâ€6upported Copper Oxide or Platinum Nanoparticles. Chemistry - A European Journal, 2011, 17, 2467-2478.	3.3	99
216	Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters, 2011, 52, 69-73.	1.4	86

#	Article	IF	CITATIONS
217	Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal–Organic Framework Solids. ChemCatChem, 2010, 2, 1438-1443.	3.7	125
218	Comparison of the Catalytic Activity of Gold Nanoparticles Supported in Ceria and Incarcerated in Styrene Copolymer. Catalysis Letters, 2010, 134, 204-209.	2.6	27
219	Claisen–Schmidt Condensation Catalyzed by Metalâ€Organic Frameworks. Advanced Synthesis and Catalysis, 2010, 352, 711-717.	4.3	101
220	Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis and Catalysis, 2010, 352, 3022-3030.	4.3	136
221	Layered Double Hydroxideâ€Supported <scp>L</scp> â€Methionineâ€Catalyzed Chemoselective Oâ€Methylation of Phenols and Esterification of Carboxylic Acids with Dimethyl Carbonate: A "Green―Protocol. Chemistry - A European Journal, 2010, 16, 1128-1132.	3.3	40
222	Water Stable Zr–Benzenedicarboxylate Metal–Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 2010, 16, 11133-11138.	3.3	718
223	Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 2010, 16, 8530-8536.	3.3	196
224	Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie - International Edition, 2010, 49, 8403-8407.	13.8	175
225	Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 2010, 99, 1-26.	20.2	570
226	Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 2010, 378, 19-25.	4.3	98
227	Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 2010, 46, 6476.	4.1	142
228	Highly active and selective gold catalysts for the aerobic oxidative condensation of benzylamines to imines and one-pot, two-step synthesis of secondary benzylamines. Journal of Catalysis, 2009, 264, 138-144.	6.2	185
229	Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 2009, 267, 1-4.	6.2	167
230	Metalâ€Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon arbon Multiple Bonds with Hydrazine. Advanced Synthesis and Catalysis, 2009, 351, 2271-2276.	4.3	93
231	General Strategy for High-Density Covalent Functionalization of Diamond Nanoparticles Using Fenton Chemistry. Chemistry of Materials, 2009, 21, 4505-4514.	6.7	93
232	Clay-supported ceric ammonium nitrate as an effective, viable catalyst in the oxidation of olefins, chalcones and sulfides by molecular oxygen. Catalysis Communications, 2009, 10, 872-878.	3.3	68
233	Clay entrapped nickel nanoparticles as efficient and recyclable catalysts for hydrogenation of olefins. Tetrahedron Letters, 2008, 49, 1818-1823.	1.4	80
234	Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 2008, 37, 2096.	38.1	1,725

#	Article	IF	CITATIONS
235	Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 2007, 13, 5106-5112.	3.3	809
236	MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 2007, 250, 294-298.	6.2	498
237	Clay-anchored non-heme iron–salen complex catalyzed cleavage of CC bond in aqueous medium. Tetrahedron, 2006, 62, 9911-9918.	1.9	75
238	Silica-Bound Homogenous Catalysts as Recoverable and Reusable Catalysts in Organic Synthesis. Advanced Synthesis and Catalysis, 2006, 348, 1391-1412.	4.3	634
239	Facile clay-induced Fischer indole synthesis: A new approach to synthesis of 1,2,3,4-tetrahydrocarbazole and indoles. Applied Catalysis A: General, 2005, 292, 305-311.	4.3	42
240	Cerium(IV) Ammonium Nitrate: A Versatile Oxidant in Synthetic Organic Chemistry. Synlett, 2005, 2005, 3014-3015.	1.8	26
241	Lewis Acids as Catalysts in Oxidation Reactions:  From Homogeneous to Heterogeneous Systems. Chemical Reviews, 2002, 102, 3837-3892.	47.7	599
242	Soft and hard acidity in ion-exchanged Y zeolites: rearrangement of 2-bromopropiophenone ethylene acetal to 2-hydroxyethyl 2-phenylpropanoate. Journal of the Chemical Society Chemical Communications, 1992, .	2.0	14
243	Nanomolar level fluorogenic detection of cyanide with an amide functionalized zirconium metalâ€organic framework and its application in realâ€world cyanide monitoring. European Journal of Inorganic Chemistry, 0, , .	2.0	3