E S Chambers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7655562/publications.pdf

Version: 2024-02-01

25 papers 2,186 citations

393982 19 h-index 610482 24 g-index

25 all docs

25 docs citations

25 times ranked

3285 citing authors

#	Article	IF	CITATIONS
1	The impact of ageing on monocytes and macrophages. Immunology Letters, 2021, 230, 1-10.	1.1	122
2	Recruitment of inflammatory monocytes by senescent fibroblasts inhibits antigen-specific tissue immunity during human aging. Nature Aging, 2021, 1, 101-113.	5.3	39
3	Cellular senescence as a possible link between prostate diseases of the ageing male. Nature Reviews Urology, 2021, 18, 597-610.	1.9	19
4	Vitamin D3 replacement enhances antigen-specific immunity in older adults. Immunotherapy Advances, 2021, 1, .	1.2	18
5	Skin barrier immunity and ageing. Immunology, 2020, 160, 116-125.	2.0	226
6	Reply. Journal of Allergy and Clinical Immunology, 2020, 146, 922-923.	1.5	0
7	Can blocking inflammation enhance immunity during aging?. Journal of Allergy and Clinical Immunology, 2020, 145, 1323-1331.	1.5	50
8	Sestrins induce natural killer function in senescent-like CD8+ T cells. Nature Immunology, 2020, 21, 684-694.	7.0	139
9	Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nature Communications, 2019, 10, 2387.	5.8	281
10	Human <scp>CD</scp> 8 ⁺ <scp>EMRA</scp> T cells display a senescenceâ€associated secretory phenotype regulated by p38 <scp>MAPK</scp> . Aging Cell, 2018, 17, e12675.	3.0	161
11	Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase–induced inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 844-856.	1.5	75
12	Dendritic cell phenotype in severe asthma reflects clinical responsiveness to glucocorticoids. Clinical and Experimental Allergy, 2018, 48, 13-22.	1.4	9
13	Impact of Zostavax Vaccination on T-Cell Accumulation and Cutaneous Gene Expression in the Skin of Older Humans After Varicella Zoster Virus Antigen–Specific Challenge. Journal of Infectious Diseases, 2018, 218, S88-S98.	1.9	10
14	Circulating Senescent T Cells Are Linked to Systemic Inflammation and Lesion Size During Human Cutaneous Leishmaniasis. Frontiers in Immunology, 2018, 9, 3001.	2.2	28
15	1 <i>α</i> ,25â€dihydroxyvitamin D3 acts via transforming growth factorâ€ <i>β</i> to upâ€regulate expression of immunosuppressive CD73 on human CD4 ⁺ Foxp3 [–] T cells. Immunology, 2015, 146, 423-431.	2.0	20
16	Distinct endotypes of steroid-resistant asthma characterized by IL-17Ahigh and IFN-γhigh immunophenotypes: Potential benefits of calcitriol. Journal of Allergy and Clinical Immunology, 2015, 136, 628-637.e4.	1.5	170
17	Vitamin D Influences Asthmatic Pathology through Its Action on Diverse Immunological Pathways. Annals of the American Thoracic Society, 2014, 11, S314-S321.	1.5	30
18	Defective IL-10 expression and in vitro steroid-induced IL-17A in paediatric severe therapy-resistant asthma. Thorax, 2014, 69, 508-515.	2.7	80

#	Article	IF	CITATIONS
19	1 <i>α</i> ,25â€dihydroxyvitamin D3 in combination with transforming growth factorâ€ <i>β</i> increases the frequency of Foxp3 ⁺ regulatory T cells through preferential expansion and usage of interleukinâ€2. Immunology, 2014, 143, 52-60.	2.0	62
20	The effects of calcitriol treatment in glucocorticoid-resistant asthma. Journal of Allergy and Clinical Immunology, 2014, 133, 1755-1757.e4.	1.5	29
21	Immunoregulatory mechanisms of vitamin D relevant to respiratory health and asthma. Annals of the New York Academy of Sciences, 2014, 1317, 57-69.	1.8	58
22	Enhanced production of IL-17A in patients with severe asthma is inhibited by $1\hat{i}\pm,25$ -dihydroxyvitamin D3 in a glucocorticoid-independent fashion. Journal of Allergy and Clinical Immunology, 2013, 132, 297-304.e3.	1.5	159
23	The role of 1α,25â€dihydroxyvitamin <scp>D</scp> 3 and cytokines in the promotion of distinct <scp>F</scp> oxp3 ⁺ and <scp>IL</scp> â€10 ⁺ <scp>CD</scp> 4 ⁺ <scp>T</scp> cells. European Journal of Immunology, 2012, 42, 2697-2708.	1.6	170
24	Serum 25-dihydroxyvitamin D levels correlate with CD4+Foxp3+ T-cell numbers in moderate/severe asthma. Journal of Allergy and Clinical Immunology, 2012, 130, 542-544.	1.5	49
25	The Impact of Vitamin D on Regulatory T Cells. Current Allergy and Asthma Reports, 2011, 11, 29-36.	2.4	182