
Satoshi Moriyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-Dimensional Fe(II)-based Metallo-Supramolecular Polymers with Electrochromic Properties of Quick Switching, Large Contrast, and High Coloration Efficiency. ACS Applied Materials & Interfaces, 2014, 6, 9118-9125.	8.0	116
2	Multi-colour electrochromic properties of Fe/Ru-based bimetallo-supramolecular polymers. Journal of Materials Chemistry C, 2013, 1, 3408.	5.5	113
3	Four-Electron Shell Structures and an Interacting Two-Electron System in Carbon-Nanotube Quantum Dots. Physical Review Letters, 2005, 94, 186806.	7.8	110
4	Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars. Applied Physics Express, 2011, 4, 075102.	2.4	101
5	Black-to-Transmissive Electrochromism with Visible-to-Near-Infrared Switching of a Co(II)-Based Metallo-Supramolecular Polymer for Smart Window and Digital Signage Applications. ACS Applied Materials & Interfaces, 2015, 7, 18266-18272.	8.0	97
6	Observation of the quantum valley Hall state in ballistic graphene superlattices. Science Advances, 2018, 4, eaaq0194.	10.3	78
7	Coupled Quantum Dots in a Graphene-Based Two-Dimensional Semimetal. Nano Letters, 2009, 9, 2891-2896.	9.1	59
8	High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric. APL Materials, 2018, 6, .	5.1	59
9	Geometrically isomeric Pt(<scp>ii</scp>)/Fe(<scp>ii</scp>)-based heterometallo-supramolecular polymers with organometallic ligands for electrochromism and the electrochemical switching of Raman scattering. Journal of Materials Chemistry C, 2016, 4, 9428-9437.	5.5	58
10	Analog of a Quantum Heat Engine Using a Single-Spin Qubit. Physical Review Letters, 2020, 125, 166802.	7.8	57
11	Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 8533-8538.	8.0	49
12	Real-time humidity-sensing properties of ionically conductive Ni(ii)-based metallo-supramolecular polymers. Journal of Materials Chemistry A, 2014, 2, 7754.	10.3	41
13	One-Dimensional Anhydrous Proton Conducting Channel Formation at High Temperature in a Pt(II)-Based Metallo-Supramolecular Polymer and Imidazole System. ACS Applied Materials & Interfaces, 2017, 9, 13406-13414.	8.0	35
14	High-temperature operation of a silicon qubit. Scientific Reports, 2019, 9, 469.	3.3	33
15	Charge-carrier mobility in hydrogen-terminated diamond field-effect transistors. Journal of Applied Physics, 2020, 127, .	2.5	33
16	Quantum-dot nanodevices with carbon nanotubes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1349-1355.	2.1	31
17	Ionic conductivity of Ni(ii)-based metallo-supramolecular polymers: effects of ligand modification. Journal of Materials Chemistry A, 2013, 1, 9016.	10.3	30
18	Topological valley currents in bilayer graphene/hexagonal boron nitride superlattices. Applied Physics Letters, 2019, 114, .	3.3	29

Satoshi Moriyama

#	Article	IF	CITATIONS
19	Direct Growth of Germanene at Interfaces between Van der Waals Materials and Ag(111). Advanced Functional Materials, 2021, 31, 2007038.	14.9	27
20	Electrical transport in semiconducting carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 24, 46-49.	2.7	26
21	Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor. Applied Physics Letters, 2015, 107, .	3.3	26
22	Proton Conductive Nanosheets Formed by Alignment of Metallo-Supramolecular Polymers. ACS Applied Materials & Interfaces, 2016, 8, 13526-13531.	8.0	26
23	Quantum Interferometry with a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>g</mml:mi></mml:math> -Factor-Tunable Spin Qubit. Physical Review Letters, 2019, 122, 207703.	7.8	25
24	Platinum(II)-Based Metallo-Supramolecular Polymer with Controlled Unidirectional Dipoles for Tunable Rectification. ACS Applied Materials & amp; Interfaces, 2015, 7, 19034-19042.	8.0	24
25	Fabrication of high- <i>k</i> /metal-gate MoS ₂ field-effect transistor by device isolation process utilizing Ar-plasma etching. Japanese Journal of Applied Physics, 2015, 54, 046502.	1.5	20
26	Field-induced confined states in graphene. Applied Physics Letters, 2014, 104, 053108.	3.3	19
27	Effect of a three-dimensional hyperbranched structure on the ionic conduction of metallo-supramolecular polymers. RSC Advances, 2015, 5, 49224-49230.	3.6	19
28	Imidazoliumâ€based poly(ionic liquid)s with poly(ethylene oxide) main chains: Effects of spacer and tail structures on ionic conductivity. Journal of Polymer Science Part A, 2016, 54, 2896-2906.	2.3	19
29	Multifunctional Pt(II)-Based Metallo-Supramolecular Polymer with Carboxylic Acid Groups: Electrochemical, Mechanochemical, Humidity, and pH Response. ACS Applied Polymer Materials, 2020, 2, 4149-4159.	4.4	17
30	Quantum oscillations in diamond field-effect transistors with a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>h</mml:mi> -BN gate dielectric. Physical Review Materials, 2019, 3, .</mml:math 	2.4	16
31	Fabrication of quantum-dot devices in graphene. Science and Technology of Advanced Materials, 2010, 11, 054601.	6.1	15
32	Proton conduction in Mo(<scp>vi</scp>)-based metallo-supramolecular polymers. Chemical Communications, 2015, 51, 11012-11014.	4.1	15
33	Excitation spectroscopy of two-electron shell structures in carbon nanotube quantum dots in magnetic fields. Applied Physics Letters, 2005, 87, 073103.	3.3	14
34	Carbon nanotube quantum dots fabricated on a GaAsâ^•AlGaAs two-dimensional electron gas substrate. Journal of Applied Physics, 2005, 98, 076106.	2.5	14
35	Synthesis and characterization of glycidyl-polymer-based poly(ionic liquid)s: highly designable polyelectrolytes with a poly(ethylene glycol) main chain. RSC Advances, 2015, 5, 87940-87947.	3.6	14
36	Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes. Applied Physics Letters, 2016, 108, .	3.3	14

SATOSHI MORIYAMA

#	Article	IF	CITATIONS
37	Characterization of Effective Mobility and Its Degradation Mechanism in MoS2MOSFETs. IEEE Nanotechnology Magazine, 2016, 15, 651-656.	2.0	14
38	An insight into ion-conduction phenomenon of gold nanocluster ligand based metallo-supramolecular polymers. Journal of Materials Chemistry A, 2016, 4, 4398-4401.	10.3	14
39	A Co(II)-based metallo-supramolecular polymer as a novel enzyme immobilization matrix for electrochemical glucose biosensing. European Polymer Journal, 2016, 83, 499-506.	5.4	12
40	Fabry–Pérot resonances and a crossover to the quantum Hall regime in ballistic graphene quantum point contacts. Scientific Reports, 2019, 9, 3031.	3.3	11
41	Two-electron and four-electron periodicity in single-wall carbon nanotube quantum dots. Superlattices and Microstructures, 2003, 34, 377-382.	3.1	10
42	Single-Carrier Transport in Graphene/hBN Superlattices. Nano Letters, 2020, 20, 2551-2557.	9.1	10
43	Single electron transistors with ultra-thin Au nanowires as a single Coulomb island. Applied Physics Letters, 2013, 102, 203117.	3.3	7
44	Selective Edge Modification in Graphene and Graphite by Chemical Oxidation. Journal of Nanoscience and Nanotechnology, 2014, 14, 2974-2978.	0.9	7
45	Carbon nanotubes as building blocks of quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 35, 338-343.	2.7	6
46	Shell structures and electron-spin configurations in single-walled carbon nanotube quantum dots. Physica Status Solidi (B): Basic Research, 2007, 244, 2371-2377.	1.5	6
47	Quaternary Ammonium Cation Functionalized Poly(Ionic Liquid)s with Poly(Ethylene Oxide) Main Chains. Macromolecular Chemistry and Physics, 2016, 217, 2551-2557.	2.2	6
48	Effect of gap width on electron transport through quantum point contact in hBN/graphene/hBN in the quantum Hall regime. Applied Physics Letters, 2019, 114, 023101.	3.3	6
49	Room-temperature negative magnetoresistance of helium-ion-irradiated defective graphene in the strong Anderson localization regime. Carbon, 2021, 175, 87-92.	10.3	6
50	Single and coupled quantum dots in single-wall carbon nanotubes. Superlattices and Microstructures, 2002, 31, 141-149.	3.1	5
51	Spin effects in single-electron transport through carbon nanotube quantum dots. Physical Review B, 2007, 76, .	3.2	5
52	Solvent Effect on Electrochemical Properties of a Co(II)â€Based Metallo‣upramolecular Polymer Film. Macromolecular Symposia, 2016, 363, 12-19.	0.7	5
53	Electron transport tuning of graphene by helium ion irradiation. Nano Express, 2022, 3, 024002.	2.4	5
54	Effect of the large current flow on the low-temperature transport properties in a bundle of single-walled carbon nanotubes. Applied Physics Letters, 2003, 83, 3803-3805.	3.3	4

SATOSHI MORIYAMA

#	Article	IF	CITATIONS
55	Helical Fe(II)-Based Metallo-Supramolecular Polymers: Effect of Crown Ether Groups Located outside the Helix on Hydrous Proton Channel Formation. ACS Applied Polymer Materials, 2020, 2, 4521-4530.	4.4	4
56	Selecting single quantum dots from a bundle of single-wall carbon nanotubes using the large current flow process. Science and Technology of Advanced Materials, 2004, 5, 613-615.	6.1	3
57	One-Dimensional Shell Structures and Excitation Spectrum in Single-Wall Carbon Nanotube Quantum Dots. Japanese Journal of Applied Physics, 2006, 45, 3633-3637.	1.5	3
58	Inelastic cotunneling mediated singlet-triplet transition in carbon nanotubes. Physical Review B, 2009, 80, .	3.2	3
59	Density-of-State Oscillation of Quasiparticle Excitation in the Spin Density Wave Phase of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo stretchy="false">(<mml:mi>TMTSF</mml:mi><mml:msub><mml:mo) 0.784314="" 1="" etqq1="" ove<="" rgbt="" td="" tj=""><td>erløæk 10 T</td><td>f 530 577 Td</td></mml:mo)></mml:msub></mml:mo </mml:math 	erløæk 10 T	f 530 577 Td
60	Physical Review Letters, 2010, 105, 267201. Observation of discrete quantum levels in multi-wall carbon nanotube quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 24, 50-53.	2.7	2
61	Artificial atom and quantum terahertz response in carbon nanotube quantum dots. Journal of Physics Condensed Matter, 2008, 20, 454203.	1.8	2
62	Fabrication of folded bilayer-bilayer graphene/hexagonal boron nitride superlattices. Applied Physics Express, 2020, 13, 035003.	2.4	2
63	ON current enhancement and variability suppression in tunnel FETs by the isoelectronic trap impurity of beryllium. Japanese Journal of Applied Physics, 2021, 60, SBBA01.	1.5	2
64	Carbon nanotubes as a building block of quantum dot devices. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 24, 10-13.	2.7	1
65	Importance of electron–electron interactions and Zeeman splitting in single-wall carbon nanotube quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 473-476.	2.7	1
66	Coulomb blockade behavior in nanostructured graphene with direct contacts. Materials Express, 2013, 3, 92-96.	0.5	1
67	Discrete quantum levels and Zeeman splitting in ultra-thin gold-nanowire quantum dots. Journal of Applied Physics, 2019, 126, 044303.	2.5	1
68	Effect of Quantum Hall State of Substrate on Single-Electron Transport of Carbon Nanotube Quantum Dots. Japanese Journal of Applied Physics, 2009, 48, 015001.	1.5	0