
## Michael D Cramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7654816/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits. Annals of Botany, 2006, 98, 693-713.                                                       | 2.9 | 1,012     |
| 2  | Root Nitrogen Acquisition and Assimilation. Plant and Soil, 2005, 274, 1-36.                                                                                                                                        | 3.7 | 509       |
| 3  | Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil, 2015, 396, 1-26.                                                                                             | 3.7 | 424       |
| 4  | The importance of nutritional regulation of plant water flux. Oecologia, 2009, 161, 15-24.                                                                                                                          | 2.0 | 268       |
| 5  | Sink strength regulates photosynthesis in sugarcane. New Phytologist, 2006, 171, 759-770.                                                                                                                           | 7.3 | 185       |
| 6  | Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant<br>and Soil, 2013, 367, 225-234.                                                                                    | 3.7 | 176       |
| 7  | Developmental Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea.<br>Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase. Plant Physiology, 2004,<br>135, 549-560. | 4.8 | 160       |
| 8  | Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia, 2009, 160,<br>235-246.                                                                                                  | 2.0 | 138       |
| 9  | Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region.<br>Functional Ecology, 2010, 24, 485-492.                                                                        | 3.6 | 138       |
| 10 | Supply and demand: sink regulation of sugar accumulation in sugarcane. Journal of Experimental<br>Botany, 2009, 60, 357-364.                                                                                        | 4.8 | 129       |
| 11 | Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 2015, 5, 8280.                                                                                                           | 3.3 | 127       |
| 12 | Specialized 'dauciform' roots of Cyperaceae are structurally distinct, but functionally analogous with 'cluster' roots. Plant, Cell and Environment, 2006, 29, 1989-1999.                                           | 5.7 | 109       |
| 13 | Nutrient availability moderates transpiration in <i>Ehrharta calycina</i> . New Phytologist, 2008, 179, 1048-1057.                                                                                                  | 7.3 | 102       |
| 14 | Growth of N <sub>2</sub> â€fixing African savanna <i>Acacia</i> species is constrained by belowâ€ground competition with grass. Journal of Ecology, 2010, 98, 156-167.                                              | 4.0 | 97        |
| 15 | Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. Journal of Experimental Botany, 2014, 65, 159-168.                                                                                | 4.8 | 94        |
| 16 | Changes in Photosynthetic Rates and Gene Expression of Leaves during a Source–Sink Perturbation in<br>Sugarcane. Annals of Botany, 2008, 101, 89-102.                                                               | 2.9 | 88        |
| 17 | Ecophysiological traits associated with the competitive ability of invasive Australian acacias.<br>Diversity and Distributions, 2011, 17, 898-910.                                                                  | 4.1 | 88        |
| 18 | Grass competition induces N2fixation in some species of African Acacia. Journal of Ecology, 2007, 95, 1123-1133.                                                                                                    | 4.0 | 87        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Topâ€down determinants of niche structure and adaptation among African Acacias. Ecology Letters, 2012, 15, 673-679.                                                                             | 6.4 | 80        |
| 20 | Regulation of photosynthesis by sugars in sugarcane leaves. Journal of Plant Physiology, 2008, 165, 1817-1829.                                                                                  | 3.5 | 76        |
| 21 | PHOTOSYNTHESIS AND SINK ACTIVITY OF WASP-INDUCED GALLS IN <i>ACACIA PYCNANTHA</i> . Ecology, 2006, 87, 1781-1791.                                                                               | 3.2 | 72        |
| 22 | A physiological analogy of the niche for projecting the potential distribution of plants. Journal of Biogeography, 2012, 39, 2132-2145.                                                         | 3.0 | 68        |
| 23 | A physiological mechanism for the formation of root casts. Palaeogeography, Palaeoclimatology,<br>Palaeoecology, 2009, 274, 125-133.                                                            | 2.3 | 66        |
| 24 | The savannaâ€grassland â€~treeline': why don't savanna trees occur in upland grasslands?. Journal of<br>Ecology, 2012, 100, 381-391.                                                            | 4.0 | 66        |
| 25 | Are Namibian "Fairy Circles―the Consequence of Self-Organizing Spatial Vegetation Patterning?. PLoS<br>ONE, 2013, 8, e70876.                                                                    | 2.5 | 65        |
| 26 | The influence of salinity on the utilization of root anaplerotic carbon and nitrogen metabolism in tomato seedlings. Journal of Experimental Botany, 1995, 46, 1569-1577.                       | 4.8 | 62        |
| 27 | Overlap in soil water sources of savanna woody seedlings and grasses. Ecohydrology, 2013, 6, 464-473.                                                                                           | 2.4 | 58        |
| 28 | Phosphorus toxicity in the Proteaceae: A problem in post-agricultural lands. Scientia Horticulturae, 2008, 117, 357-365.                                                                        | 3.6 | 56        |
| 29 | Increasing the utility of genomics in unravelling sucrose accumulation. Field Crops Research, 2005, 92, 149-158.                                                                                | 5.1 | 55        |
| 30 | Pan evaporation and wind run decline in the Cape Floristic Region of South Africa (1974–2005):<br>implications for vegetation responses to climate change. Climatic Change, 2011, 109, 437-452. | 3.6 | 54        |
| 31 | Mapping soil organic carbon stocks and trends with satellite-driven high resolution maps over South<br>Africa. Science of the Total Environment, 2021, 771, 145384.                             | 8.0 | 52        |
| 32 | Enriched rhizosphere CO2 concentrations can ameliorate the influence of salinity on hydroponically grown tomato plants. Physiologia Plantarum, 1995, 94, 425-432.                               | 5.2 | 51        |
| 33 | Does phosphate acquisition constrain legume persistence in the fynbos of the Cape Floristic Region?.<br>Plant and Soil, 2010, 334, 33-46.                                                       | 3.7 | 51        |
| 34 | Phosphate as a limiting resource: introduction. Plant and Soil, 2010, 334, 1-10.                                                                                                                | 3.7 | 49        |
| 35 | Hydraulic redistribution by Protea 'Sylvia' (Proteaceae) facilitates soil water replenishment and water acquisition by an understorey grass and shrub. Functional Plant Biology, 2009, 36, 752. | 2.1 | 47        |
| 36 | Biological Nitrogen Fixation is not a Major Contributor to the Nitrogen Demand of a Commercially<br>Grown South African Sugarcane Cultivar. Plant and Soil, 2005, 277, 85-96.                   | 3.7 | 46        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Defoliation depletes the carbohydrate reserves of resprouting Acacia saplings in an African savanna.<br>Plant Ecology, 2011, 212, 2047-2055.                                                         | 1.6 | 39        |
| 38 | Implications of historical interactions between herbivory and fire for rangeland management in African savannas. Ecosphere, 2017, 8, e01946.                                                         | 2.2 | 38        |
| 39 | Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait?. Australian Journal of Botany, 2012, 60, 104.                                                                     | 0.6 | 37        |
| 40 | Are mima-like mounds the consequence of long-term stability of vegetation spatial patterning?.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 409, 72-83.                               | 2.3 | 37        |
| 41 | The distribution and spatial patterning of mima-like mounds in South Africa suggests genesis through vegetation induced aeolian sediment deposition. Journal of Arid Environments, 2015, 119, 16-26. | 2.4 | 37        |
| 42 | Cattle don't care: Animal behaviour is similar regardless of grazing management in grasslands.<br>Agriculture, Ecosystems and Environment, 2019, 272, 175-187.                                       | 5.3 | 37        |
| 43 | How succulent leaves of Aizoaceae avoid mesophyll conductance limitations of photosynthesis and survive drought. Journal of Experimental Botany, 2013, 64, 5485-5496.                                | 4.8 | 36        |
| 44 | The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning. New Phytologist, 2005, 165, 157-169.                                                | 7.3 | 35        |
| 45 | Belowground competitive suppression of seedling growth by grass in an African savanna. Plant<br>Ecology, 2012, 213, 1655-1666.                                                                       | 1.6 | 34        |
| 46 | Hard evidence that heuweltjie earth mounds are relictual features produced by differential erosion.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350-352, 189-197.                    | 2.3 | 33        |
| 47 | Root of edaphically controlled Proteaceae turnover on the Agulhas Plain, South Africa: phosphate uptake regulation and growth. Plant, Cell and Environment, 2008, 31, 1825-1833.                     | 5.7 | 30        |
| 48 | Culm sucrose accumulation promotes physiological decline of mature leaves in ripening sugarcane.<br>Field Crops Research, 2008, 108, 250-258.                                                        | 5.1 | 30        |
| 49 | Measures of biologically relevant environmental heterogeneity improve prediction of regional plant species richness. Journal of Biogeography, 2017, 44, 579-591.                                     | 3.0 | 29        |
| 50 | Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.<br>American Naturalist, 2017, 189, 684-699.                                                    | 2.1 | 29        |
| 51 | Plant ecophysiological diversity. , 2014, , 248-272.                                                                                                                                                 |     | 29        |
| 52 | Correspondence between δ13C and δ15N in soils suggests coordinated fractionation processes for soil C<br>and N. Plant and Soil, 2018, 423, 257-271.                                                  | 3.7 | 28        |
| 53 | The effect of supplementation of root zone dissolved inorganic carbon on fruit yield and quality of<br>tomatoes (cv †Daniella') grown with salinity. Scientia Horticulturae, 2001, 89, 269-289.      | 3.6 | 27        |
| 54 | Maintenance costs of serotiny do not explain weak serotiny. Austral Ecology, 2009, 34, 653-662.                                                                                                      | 1.5 | 27        |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Savanna tree-grass competition is modified by substrate type and herbivory. Journal of Vegetation Science, 2011, 22, 225-237.                                                     | 2.2 | 26        |
| 56 | Unravelling the limits to tree height: a major role for water and nutrient trade-offs. Oecologia, 2012, 169, 61-72.                                                               | 2.0 | 26        |
| 57 | Nitrogen fertilisation reduces grass-induced N2 fixation of tree seedlings from semi-arid savannas.<br>Plant and Soil, 2013, 365, 307-320.                                        | 3.7 | 26        |
| 58 | Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis?. Oecologia, 2014, 175, 1129-1142.                                 | 2.0 | 26        |
| 59 | Are forestâ€shrubland mosaics of the Cape Floristic Region an example of alternate stable states?.<br>Ecography, 2019, 42, 717-729.                                               | 4.5 | 26        |
| 60 | Traits related to efficient acquisition and use of phosphorus promote diversification in Proteaceae in phosphorusâ€impoverished landscapes. Plant and Soil, 2021, 462, 67-88.     | 3.7 | 26        |
| 61 | Edaphic properties enable facilitative and competitive interactions resulting in fairy circle formation.<br>Ecography, 2017, 40, 1210-1220.                                       | 4.5 | 24        |
| 62 | Variation in rootâ€zone CO 2 concentration modifies isotopic fractionation of carbon and nitrogen in tomato seedlings. New Phytologist, 2003, 157, 45-54.                         | 7.3 | 23        |
| 63 | Benefits of photosynthesis for insects in galls. Oecologia, 2012, 170, 987-997.                                                                                                   | 2.0 | 22        |
| 64 | Does a tradeoff between trait plasticity and resource conservatism contribute to the maintenance of alternative stable states?. New Phytologist, 2019, 223, 1809-1819.            | 7.3 | 22        |
| 65 | The contribution of fog to water and nutrient supply to Arthraerua leubnitziae in the central Namib<br>Desert, Namibia. Journal of Arid Environments, 2019, 161, 35-46.           | 2.4 | 22        |
| 66 | The Consequences of Precipitation Seasonality for Mediterranean-Ecosystem Vegetation of South Africa. PLoS ONE, 2015, 10, e0144512.                                               | 2.5 | 22        |
| 67 | The influence of dissolved inorganic carbon in the rhizosphere on carbon and nitrogen metabolism in<br>salinityâ€ŧreated tomato plants. New Phytologist, 1999, 142, 441-450.      | 7.3 | 20        |
| 68 | Why does <i>Dasineura dielsi</i> â€induced galling of <i>Acacia cyclops</i> not impede vegetative<br>growth?. Journal of Applied Ecology, 2009, 46, 214-222.                      | 4.0 | 20        |
| 69 | Is the lack of leguminous savanna trees in grasslands of South Africa related to nutritional constraints?. Plant and Soil, 2010, 336, 173-182.                                    | 3.7 | 20        |
| 70 | Intraspecific competition between shrubs in a semi-arid savanna. Plant Ecology, 2011, 212, 701-713.                                                                               | 1.6 | 20        |
| 71 | Legume seeders of the Cape Floristic Region inhabit more fertile soils than congeneric<br>resprouters—sometimes. Plant Ecology, 2011, 212, 1979-1989.                             | 1.6 | 20        |
| 72 | Contrasting Global Patterns of Spatially Periodic Fairy Circles and Regular Insect Nests in Drylands.<br>Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3327-3342. | 3.0 | 19        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Physiological changes in white lupin associated with variation in root-zone CO2 concentration and cluster-root P mobilization. Plant, Cell and Environment, 2005, 28, 1203-1217.                                | 5.7 | 18        |
| 74 | N and P colimitation of N2-fixing and N-supplied fynbos legumes from the Cape Floristic Region. Plant and Soil, 2013, 373, 217-228.                                                                             | 3.7 | 18        |
| 75 | The influence of elevated rhizosphere dissolved inorganic carbon concentrations on respiratory O2 and CO2 flux in tomato roots. Journal of Experimental Botany, 1998, 49, 1977-1985.                            | 4.8 | 18        |
| 76 | Atmospheric nutrient deposition to the west coast of South Africa. Atmospheric Environment, 2013, 81, 625-632.                                                                                                  | 4.1 | 16        |
| 77 | Environmental correlates of biomeâ€level floristic turnover in South Africa. Journal of Biogeography, 2017, 44, 1745-1757.                                                                                      | 3.0 | 16        |
| 78 | Title is missing!. Plant and Soil, 2000, 221, 5-11.                                                                                                                                                             | 3.7 | 15        |
| 79 | N-fertilization does not alleviate grass competition induced reduction of growth of African savanna species. Plant and Soil, 2013, 366, 563-574.                                                                | 3.7 | 15        |
| 80 | Biome boundary maintained by intense belowground resource competition in world's thinnest-rooted plant community. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . | 7.1 | 15        |
| 81 | Elevated root zone dissolved inorganic carbon can ameliorate aluminium toxicity in tomato seedlings. New Phytologist, 2001, 152, 29-39.                                                                         | 7.3 | 14        |
| 82 | Putting back what we take out, but how much?. Scientia Horticulturae, 2007, 111, 378-388.                                                                                                                       | 3.6 | 14        |
| 83 | Differentiation of the biogeochemical niches of legumes and non-legumes in the Cape Floristic Region of South Africa. Plant Ecology, 2015, 216, 1583-1595.                                                      | 1.6 | 14        |
| 84 | New regionally modelled soil layers improve prediction of vegetation type relative to that based on global soil models. Diversity and Distributions, 2019, 25, 1736-1750.                                       | 4.1 | 14        |
| 85 | Rotational grazing management has little effect on remotely-sensed vegetation characteristics across farm fence-line contrasts. Agriculture, Ecosystems and Environment, 2019, 282, 40-48.                      | 5.3 | 14        |
| 86 | Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting<br>aboveground biomass in nonâ€forest ecosystems. Remote Sensing in Ecology and Conservation, 2022, 8,<br>57-71.      | 4.3 | 13        |
| 87 | The present and likely past climatic distribution of the termite Microhodotermes viator in relation to the distribution of heuweltjies. Journal of Arid Environments, 2017, 146, 35-43.                         | 2.4 | 12        |
| 88 | Do the gas exchange characteristics of alien acacias enable them to successfully invade the fynbos?.<br>South African Journal of Botany, 1999, 65, 232-238.                                                     | 2.5 | 11        |
| 89 | The Contribution of Occult Precipitation to Nutrient Deposition on the West Coast of South Africa.<br>PLoS ONE, 2015, 10, e0126225.                                                                             | 2.5 | 9         |
| 90 | Ecophysiological traits of invasive alien <i>Acacia cyclops</i> compared to coâ€occuring native species in Strandveld vegetation of the Cape Floristic Region. Austral Ecology, 2020, 45, 48-59.                | 1.5 | 9         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Faunal input at host plants: Can camel thorn trees use nutrients imported by resident sociable weavers?. Ecology and Evolution, 2020, 10, 11643-11656.                                          | 1.9 | 9         |
| 92  | Root respiratory quotient and nitrate uptake in hydroponically grown non-mycorrhizal and mycorrhizal wheat. Mycorrhiza, 1999, 9, 57-60.                                                         | 2.8 | 8         |
| 93  | Does defoliation frequency and severity influence plant productivity? The role of grazing management and soil nutrients. African Journal of Range and Forage Science, 2021, 38, 141-156.        | 1.4 | 8         |
| 94  | Causes of leaf-tip scorch in the cultivated Protea hybrid â€~Sylvia'. Scientia Horticulturae, 2004, 103,<br>65-77.                                                                              | 3.6 | 6         |
| 95  | Does the Prostrate-leaved Geophyte Brunsvigia orientalis Utilize Soil-derived CO2 for Photosynthesis?. Annals of Botany, 2007, 99, 835-844.                                                     | 2.9 | 6         |
| 96  | The roles of climate and soil nutrients in shaping the life histories of grasses native to the Cape<br>Floristic Region. Plant and Soil, 2012, 355, 323-340.                                    | 3.7 | 6         |
| 97  | Competitive resistance of a native shrubland to invasion by the alien invasive tree species, Acacia cyclops. Biological Invasions, 2015, 17, 3563-3577.                                         | 2.4 | 6         |
| 98  | Evidence for aeolian origins of heuweltjies from buried gravel layers. South African Journal of<br>Science, 2016, 112, 10.                                                                      | 0.7 | 6         |
| 99  | Environmental heterogeneity explains contrasting plant species richness between the South African<br>Cape and southwestern Australia. Journal of Biogeography, 2021, 48, 1875-1888.             | 3.0 | 6         |
| 100 | Reduction, assimilation and transport of N in normal and gibberellin-deficient tomato plants.<br>Physiologia Plantarum, 1995, 95, 347-354.                                                      | 5.2 | 6         |
| 101 | Demographic Bottlenecks and Savanna Tree Abundance. , 2017, , 161-188.                                                                                                                          |     | 5         |
| 102 | Does irrigation influence the growth, yield and water use efficiency of the protea hybrid â€~Sylvia'<br>(Protea susannae X Protea eximia)?. South African Journal of Botany, 2003, 69, 135-143. | 2.5 | 4         |
| 103 | Fairy circles in Namibia are assembled from genetically distinct grasses. Communications Biology, 2020, 3, 698.                                                                                 | 4.4 | 3         |
| 104 | The role of shade in maintaining alternative stable states between open―and closed anopy vegetation.<br>Journal of Ecology, 2021, 109, 3835-3848.                                               | 4.0 | 3         |
| 105 | Plant specialisation may limit climateâ€induced vegetation change to within topographic and edaphic<br>niches on a subâ€Antarctic island. Functional Ecology, 2022, 36, 2636-2648.              | 3.6 | 3         |
| 106 | Assessing the evidence for aeolian origins of mima-like mounds in South Africa. Catena, 2022, 212, 106041.                                                                                      | 5.0 | 2         |
| 107 | The role of N efflux and root abscission in determining plant δ 15 N. Plant and Soil, 2017, 416, 551-563.                                                                                       | 3.7 | 1         |
| 108 | Quantifying N-loss by root abscission: consequences for wheat N budgets and δ15N values. Journal of<br>Plant Physiology, 2018, 231, 49-56.                                                      | 3.5 | 1         |

| #   | Article                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Generalist indigenous herbivores resist alien tree invasion: Rhabdomys pumilio limits establishment of<br>Acacia cyclops. Biological Invasions, 0, , 1. | 2.4 | 1         |
| 110 | Causes of landscape mega-ripples: The kommetjies of South Africa. Geoderma, 2019, 340, 25-37.                                                           | 5.1 | 0         |