Lisa Miorin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7654810/publications.pdf

Version: 2024-02-01

all docs

34 11,596 25 33 g-index

42 42 42 22688

times ranked

citing authors

docs citations

#	Article	IF	CITATIONS
1	Functional Effects of Cardiomyocyte Injury in COVID-19. Journal of Virology, 2022, 96, JVI0106321.	3.4	17
2	SLiMs go viral! One more weapon against interferon. Cell Host and Microbe, 2022, 30, 286-288.	11.0	0
3	A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners. Emerging Microbes and Infections, 2021, 10, 376-383.	6.5	74
4	MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Reports, 2021, 34, 108628.	6.4	287
5	Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371, 926-931.	12.6	247
6	Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Science Advances, 2021, 7, .	10.3	154
7	COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. Frontiers in Pharmacology, 2021, 12, 633680.	3.5	64
8	Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Modern Pathology, 2021, 34, 1456-1467.	5 . 5	184
9	Hepatitis C virus drugs that inhibit SARS-CoV-2 papain-like protease synergize with remdesivir to suppress viral replication in cell culture. Cell Reports, 2021, 35, 109133.	6.4	53
10	Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. Journal of Interferon and Cytokine Research, 2021, 41, 205-219.	1.2	5
11	Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 2021, 81, 2656-2668.e8.	9.7	137
12	Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. Journal of Virology, 2021, 95, e0040221.	3.4	97
13	African Swine Fever Virus Induces STAT1 and STAT2 Degradation to Counteract IFN-I Signaling. Frontiers in Microbiology, 2021, 12, 722952.	3.5	17
14	The virucidal effects of 405Ânm visible light on SARS-CoV-2 and influenza A virus. Scientific Reports, 2021, 11, 19470.	3.3	28
15	Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586, 113-119.	27.8	672
16	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	12.6	508
17	SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28344-28354.	7.1	421
18	A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine, 2020, 26, 1033-1036.	30.7	1,678

#	Article	IF	Citations
19	The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.	28.9	825
20	A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583, 459-468.	27.8	3,542
21	An In Vitro Microneutralization Assay for SARSâ€CoVâ€⊋ Serology and Drug Screening. Current Protocols in Microbiology, 2020, 58, e108.	6.5	165
22	Host-Specific NS5 Ubiquitination Determines Yellow Fever Virus Tropism. Journal of Virology, 2019, 93,	3.4	18
23	Virusâ€induced autophagic degradation of <scp>STAT</scp> 2 as a mechanism for interferon signaling blockade. EMBO Reports, 2019, 20, e48766.	4.5	27
24	Antagonism of type I interferon by flaviviruses. Biochemical and Biophysical Research Communications, 2017, 492, 587-596.	2.1	59
25	The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication. Journal of Virology, 2017, 91, .	3.4	68
26	Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling. Cell Host and Microbe, 2016, 19, 882-890.	11.0	658
27	Visual detection of Flavivirus RNA in living cells. Methods, 2016, 98, 82-90.	3.8	12
28	Tumor Suppressor Cylindromatosis (CYLD) Controls HIV Transcription in an NF-κB-Dependent Manner. Journal of Virology, 2014, 88, 7528-7540.	3.4	24
29	The Interferon Signaling Antagonist Function of Yellow Fever Virus NS5 Protein Is Activated by Type I Interferon. Cell Host and Microbe, 2014, 16, 314-327.	11.0	126
30	A Single Amino Acid Substitution in the Novel H7N9 Influenza A Virus NS1 Protein Increases CPSF30 Binding and Virulence. Journal of Virology, 2014, 88, 12146-12151.	3.4	65
31	Unanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response. Immunity, 2014, 40, 880-895.	14.3	135
32	Three-Dimensional Architecture of Tick-Borne Encephalitis Virus Replication Sites and Trafficking of the Replicated RNA. Journal of Virology, 2013, 87, 6469-6481.	3.4	123
33	Formation of membrane-defined compartments by tick-borne encephalitis virus contributes to the early delay in interferon signaling. Virus Research, 2012, 163, 660-666.	2.2	43
34	Identification of a Universal Group B Streptococcus Vaccine by Multiple Genome Screen. Science, 2005, 309, 148-150.	12.6	497