
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7654605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constraints on near-source saturation models for avoiding over-saturation of response spectral ordinates in RVT-based stochastic ground-motion simulations. Journal of Seismology, 2022, 26, 1-13.	0.6	2
2	Host-region parameters for an adjustable model for crustal earthquakes to facilitate the implementation of the backbone approach to building ground-motion logic trees in probabilistic seismic hazard analysis. Earthquake Spectra, 2022, 38, 917-949.	1.6	10
3	A proxy-based model for estimating V30 in the Iberian Peninsula. Soil Dynamics and Earthquake Engineering, 2022, 155, 107165.	1.9	8
4	Capturing epistemic uncertainty in site response. Earthquake Spectra, 2021, 37, 921-936.	1.6	26
5	Impact of stochastic representations of pedestrian actions on serviceability response. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2021, 174, 113-128.	0.3	5
6	Risk Oriented Earthquake Hazard Assessment: Influence of Spatial Discretisation and Non-ergodic Ground-Motion Models. Springer Tracts in Civil Engineering, 2021, , 169-187.	0.3	2
7	Multivariate Statistical Appraisal of Regional Susceptibility to Induced Seismicity: Application to the Permian Basin, SW United States. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022768.	1.4	7
8	Numerical assessment of reinforced concrete members incorporating recycled rubber materials. Engineering Structures, 2020, 204, 110017.	2.6	8
9	Earthquake Hazard Uncertainties Improved Using Precariously Balanced Rocks. AGU Advances, 2020, 1, e2020AV000182.	2.3	12
10	Selecting Ground-Motion Models for Site-Specific PSHA: Adaptability versus Applicability. Bulletin of the Seismological Society of America, 2020, 110, 2801-2815.	1.1	18
11	Attenuation of pedestrian-induced vibrations in girder footbridges using tuned-mass dampers. Advances in Bridge Engineering, 2020, 1, .	0.8	3
12	Hybrid broadband ground motion simulation validation of small magnitude earthquakes in Canterbury, New Zealand. Earthquake Spectra, 2020, 36, 673-699.	1.6	25
13	Guidance for footbridge design: a new simplified method for the accurate evaluation of the structural response in serviceability conditions. Advances in Bridge Engineering, 2020, 1, .	0.8	2
14	Ground-motion networks in the Groningen field: usability and consistency of surface recordings. Journal of Seismology, 2019, 23, 1233-1253.	0.6	12
15	A Numerical Study on the Structural Response of Steel Structures under Post-Blast Travelling Fires. , 2019, , .		1
16	Simulations for the development of a ground motion model for induced seismicity in the Groningen gas field, The Netherlands. Bulletin of Earthquake Engineering, 2019, 17, 4441-4456.	2.3	19
17	Continuous integration of data into ground-motion models using Bayesian updating. Journal of Seismology, 2019, 23, 39-57.	0.6	17
18	Inverse form-finding for tensegrity structures. Computers and Structures, 2019, 215, 27-42.	2.4	12

#	Article	IF	CITATIONS
19	Addressing limitations in existing â€~simplified' liquefaction triggering evaluation procedures: application to induced seismicity in the Groningen gas field. Bulletin of Earthquake Engineering, 2019, 17, 4539-4557.	2.3	50
20	Extensions to the Groningen ground-motion model for seismic risk calculations: component-to-component variability and spatial correlation. Bulletin of Earthquake Engineering, 2019, 17, 4417-4439.	2.3	25
21	Performance of rubberised reinforced concrete members under cyclic loading. Engineering Structures, 2018, 166, 526-545.	2.6	56
22	Behaviour of rubberised concrete members in asymmetric shear tests. Construction and Building Materials, 2018, 159, 361-375.	3.2	22
23	Markov chain Monte Carlo groundâ€motion selection algorithms for conditional intensity measure targets. Earthquake Engineering and Structural Dynamics, 2018, 47, 2468-2489.	2.5	4
24	Investigation of Systematic Ground Motion Effects through Ground Motion Simulation of Small-to-Moderate Magnitude Earthquakes. , 2018, , .		0
25	A Critique of b-Values Used for Computing Magnitude Scaling Factors. , 2018, , .		3
26	Inelastic Behaviour of RC Members Incorporating High Deformability Concrete. , 2018, , 2399-2406.		2
27	Framework for a Ground-Motion Model for Induced Seismic Hazard and Risk Analysis in the Groningen Gas Field, The Netherlands. Earthquake Spectra, 2017, 33, 481-498.	1.6	66
28	Experimental assessment and constitutive modelling of rubberised concrete materials. Construction and Building Materials, 2017, 137, 246-260.	3.2	102
29	On the gradient of the yield plateau in structural carbon steels. Journal of Constructional Steel Research, 2017, 130, 120-130.	1.7	26
30	Developing a model for the prediction of ground motions due to earthquakes in the Groningen gas field. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2017, 96, s203-s213.	0.6	15
31	Scenario Dependence of Linear Siteâ€Effect Factors for Shortâ€Period Response Spectral Ordinates. Bulletin of the Seismological Society of America, 2017, 107, 2859-2872.	1.1	64
32	Interfrequency Correlations among Fourier Spectral Ordinates and Implications for Stochastic Groundâ€Motion Simulation. Bulletin of the Seismological Society of America, 2017, 107, 2774-2791.	1.1	23
33	Assessment of efficiency of intensity measures for performance-based travelling fire design. , 2017, , .		1
34	Serviceability Response of a Benchmark Cable-Stayed Footbridge: Comparison of Available Methods' Prediction. , 2017, , .		0
35	Seismic hazard disaggregation in performanceâ€based earthquake engineering: occurrence or exceedance?. Earthquake Engineering and Structural Dynamics, 2016, 45, 835-842.	2.5	16
36	On the Relationship between Fourier and Response Spectra: Implications for the Adjustment of Empirical Groundâ€Motion Prediction Equations (GMPEs). Bulletin of the Seismological Society of America, 2016, 106, 1235-1253.	1.1	110

#	Article	IF	CITATIONS
37	Empirical Correlation between Inelastic and Elastic Spectral Displacement Demands. Earthquake Spectra, 2016, 32, 1419-1448.	1.6	17
38	Developing an Application‧pecific Groundâ€Motion Model for Induced Seismicity. Bulletin of the Seismological Society of America, 2016, 106, 158-173.	1.1	84
39	Chapter 2 Seismic Hazard And Earthquake Actions. , 2016, , 7-40.		Ο
40	Sensitivity of Probabilistic Seismic Hazard Obtained by Algorithmic Differentiation: A Feasibility Study. Bulletin of the Seismological Society of America, 2015, 105, 1810-1822.	1.1	4
41	Development of a Response Spectral Groundâ€Motion Prediction Equation (GMPE) for Seismicâ€Hazard Analysis from Empirical Fourier Spectral and Duration Models. Bulletin of the Seismological Society of America, 2015, 105, 2192-2218.	1.1	83
42	Extension of the Random-Effects Regression Algorithm to Account for the Effects of Nonlinear Site Response. Bulletin of the Seismological Society of America, 2015, 105, 3196-3202.	1.1	13
43	Selection of Ground Motion Prediction Equations for the Global Earthquake Model. Earthquake Spectra, 2015, 31, 19-45.	1.6	115
44	A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a New-Build Nuclear Site in South Africa. Earthquake Spectra, 2015, 31, 661-698.	1.6	77
45	Variability and Uncertainty in Empirical Ground-Motion Prediction for Probabilistic Hazard and Risk Analyses. Geotechnical, Geological and Earthquake Engineering, 2015, , 97-128.	0.1	7
46	Crossed and Nested Mixed-Effects Approaches for Enhanced Model Development and Removal of the Ergodic Assumption in Empirical Ground-Motion Models. Bulletin of the Seismological Society of America, 2014, 104, 702-719.	1.1	108
47	A Study of the Sensitivity of Response Spectral Amplitudes on Seismological Parameters Using Algorithmic Differentiation. Bulletin of the Seismological Society of America, 2014, 104, 2240-2252.	1.1	19
48	Fourier spectral- and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions. Bulletin of Earthquake Engineering, 2014, 12, 467-493.	2.3	70
49	Probabilistic assessment of the seismic performance of earth slopes. Bulletin of Earthquake Engineering, 2014, 12, 1071-1090.	2.3	55
50	Vector fragility surfaces for reinforced concrete frames in Europe. Bulletin of Earthquake Engineering, 2014, 12, 1725-1753.	2.3	47
51	Prediction and optimisation of seismic drift demands incorporating ground motion frequency content. Bulletin of Earthquake Engineering, 2014, 12, 255-276.	2.3	16
52	Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bulletin of Earthquake Engineering, 2014, 12, 341-358.	2.3	71
53	Source-Scaling Relationships for the Simulation of Rupture Geometry within Probabilistic Seismic-Hazard Analysis. Bulletin of the Seismological Society of America, 2014, 104, 1620-1635.	1.1	15
54	Serviceability limit state of vibrations in under-deck cable-stayed bridges accounting for vehicle-structure interaction. Engineering Structures, 2014, 61, 61-72.	2.6	29

#	Article	IF	CITATIONS
55	Application of Single-Station Sigma and Site-Response Characterization in a Probabilistic Seismic-Hazard Analysis for a New Nuclear Site. Bulletin of the Seismological Society of America, 2014, 104, 1601-1619.	1.1	133
56	Comfort in Slender Bridges Subjected to Traffic Loading and Hammering Effects. , 2014, , .		0
57	Earthquake loss estimation for Greater Cairo and the national economic implications. Bulletin of Earthquake Engineering, 2013, 11, 1217-1257.	2.3	9
58	Influence of ground motion characteristics on drift demands in steel moment frames designed to Eurocode 8. Engineering Structures, 2013, 52, 502-517.	2.6	36
59	Seismic shear demands in multi-storey steel frames designed to Eurocode 8. Engineering Structures, 2013, 52, 69-87.	2.6	16
60	Structural behaviour and design criteria of underâ€deck cableâ€stayed bridges subjected to seismic action. Earthquake Engineering and Structural Dynamics, 2013, 42, 891-912.	2.5	11
61	Estimating ground motion levels in earthquake damage investigations: a framework for forensic engineering seismology. International Journal of Forensic Engineering, 2012, 1, 3.	0.1	5
62	Evaluation of structural performance in the immediate aftermath of an earthquake: a case study of the 2011 Christchurch earthquake. International Journal of Forensic Engineering, 2012, 1, 58.	0.1	29
63	A predictive model for Arias intensity at multiple sites and consideration of spatial correlations. Earthquake Engineering and Structural Dynamics, 2012, 41, 431-451.	2.5	79
64	Earthquake Accelerogram Selection and Scaling Procedures for Estimating the Distribution of Drift Response. Journal of Structural Engineering, 2011, 137, 345-357.	1.7	57
65	Influence of the mean period of ground motion on the inelastic dynamic response of single and multi degree of freedom systems. Earthquake Engineering and Structural Dynamics, 2011, 40, 237-256.	2.5	38
66	An evolutionary stochastic ground-motion model defined by a seismological scenario and local site conditions. Soil Dynamics and Earthquake Engineering, 2011, 31, 1465-1479.	1.9	8
67	A Seismologically Consistent Husid Envelope Function for the Stochastic Simulation of Earthquake Ground-Motions. Computational Methods in Applied Sciences (Springer), 2011, , 229-246.	0.1	5
68	Current empirical ground-motion prediction equations for Europe and their application to Eurocode 8. Bulletin of Earthquake Engineering, 2010, 8, 5-26.	2.3	29
69	The Influence of Geographical Resolution of Urban Exposure Data in an Earthquake Loss Model for Istanbul. Earthquake Spectra, 2010, 26, 619-634.	1.6	51
70	Theoretical Consistency of Common Record Selection Strategies in Performance-Based Earthquake Engineering. Geotechnical, Geological and Earthquake Engineering, 2010, , 49-58.	0.1	7
71	Probabilistic seismic hazard analysis for rock sites in the cities of Abu Dhabi, Dubai and Ra's Al Khaymah, United Arab Emirates. Georisk, 2009, 3, 1-29.	2.6	60
72	New predictive equations for Arias intensity from crustal earthquakes in New Zealand. Journal of Seismology, 2009, 13, 31-52.	0.6	74

#	Article	IF	CITATIONS
73	An energy-based envelope function for the stochastic simulation of earthquake accelerograms. Soil Dynamics and Earthquake Engineering, 2009, 29, 1123-1133.	1.9	37
74	Empirical equations for the prediction of the equivalent number of cycles of earthquake ground motion. Soil Dynamics and Earthquake Engineering, 2009, 29, 1425-1436.	1.9	39
75	Empirical Equations for the Prediction of the Significant, Bracketed, and Uniform Duration of Earthquake Ground Motion. Bulletin of the Seismological Society of America, 2009, 99, 3217-3233.	1.1	213
76	Seismic source identification and characterisation for probabilistic seismic hazard analyses conducted in the Buller–NW Nelson Region, South Island, New Zealand. Journal of Seismology, 2008, 12, 477-498.	0.6	4
77	An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region. Bulletin of Earthquake Engineering, 2008, 6, 149-177.	2.3	154
78	Numbers of scaled and matched accelerograms required for inelastic dynamic analyses. Earthquake Engineering and Structural Dynamics, 2008, 37, 1585-1607.	2.5	170
79	Dependence of Damping Correction Factors for Response Spectra on Duration and Numbers of Cycles. Journal of Structural Engineering, 2008, 134, 1364-1373.	1.7	48
80	Recent Developments in the Treatment of Ground-Motion Variability in Earthquake Loss Models. Journal of Earthquake Engineering, 2008, 12, 71-80.	1.4	35
81	Observations from the Folkestone, U.K., Earthquake of 28 April 2007. Seismological Research Letters, 2008, 79, 672-687.	0.8	11
82	Can Earthquake Loss Models be Validated Using Field Observations?. Journal of Earthquake Engineering, 2008, 12, 1078-1104.	1.4	39
83	Conditional Prediction of Absolute Durations. Bulletin of the Seismological Society of America, 2008, 98, 1588-1594.	1.1	22
84	The Influence of Magnitude Range on Empirical Ground-Motion Prediction. Bulletin of the Seismological Society of America, 2007, 97, 2152-2170.	1.1	145
85	Investigation of the Static and the Dynamic Behaviour of Stress-Ribbon Footbridges under Pedestrian Actions. , 0, , .		0