List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7654208/publications.pdf Version: 2024-02-01

ANTONIN FEIEAD

#	Article	IF	CITATIONS
1	Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. Journal of Applied Physics, 2000, 88, 148-160.	2.5	236
2	Raman Spectroscopy of Organic–Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 401-406.	4.6	206
3	Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 1368-1373.	4.6	191
4	Size and Purity Control of HPHT Nanodiamonds down to 1 nm. Journal of Physical Chemistry C, 2015, 119, 27708-27720.	3.1	144
5	Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells. Solar Energy Materials and Solar Cells, 2016, 158, 2-10.	6.2	90
6	Direct measurement of the deep defect density in thin amorphous silicon films with the â€~â€~absolute'' constant photocurrent method. Journal of Applied Physics, 1995, 78, 6203-6210.	2.5	87
7	Ultrafast carrier dynamics in microcrystalline silicon probed by time-resolved terahertz spectroscopy. Physical Review B, 2009, 79, .	3.2	77
8	Microcrystalline silicon thin films studied by atomic force microscopy with electrical current detection. Journal of Applied Physics, 2002, 92, 587-593.	2.5	74
9	Local characterization of electronic transport in microcrystalline silicon thin films with submicron resolution. Applied Physics Letters, 1999, 74, 1475-1477.	3.3	69
10	Basic features of transport in microcrystalline silicon. Solar Energy Materials and Solar Cells, 2003, 78, 493-512.	6.2	63
11	Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application. Scientific Reports, 2016, 6, 22481.	3.3	50
12	Gold Micrometer Crystals Modified with Carboranethiol Derivatives. Journal of Physical Chemistry C, 2008, 112, 14446-14455.	3.1	48
13	Characterization of mixed phase silicon by Raman spectroscopy. Journal of Non-Crystalline Solids, 2006, 352, 1209-1212.	3.1	46
14	Model of transport in microcrystalline silicon. Journal of Non-Crystalline Solids, 2002, 299-302, 355-359.	3.1	41
15	Crystallinity of the mixed phase silicon thin films by Raman spectroscopy. Journal of Non-Crystalline Solids, 2008, 354, 2253-2257.	3.1	40
16	Transport study of selfâ€supporting porous silicon. Applied Physics Letters, 1995, 66, 1098-1100.	3.3	38
17	Model of electronic transport in microcrystalline silicon and its use for prediction of device performance. Journal of Non-Crystalline Solids, 2004, 338-340, 303-309.	3.1	32
18	Characterization of grain growth, nature and role of grain boundaries in microcrystalline silicon—review of typical features. Thin Solid Films, 2006, 501, 107-112.	1.8	32

#	Article	IF	CITATIONS
19	Transport anisotropy in microcrystalline silicon studied by measurement of ambipolar diffusion length. Journal of Applied Physics, 2001, 89, 1800.	2.5	31
20	Effect of hydrogen passivation on polycrystalline silicon thin films. Thin Solid Films, 2005, 487, 152-156.	1.8	30
21	Role of grains in protocrystalline silicon layers grown at very low substrate temperatures and studied by atomic force microscopy. Journal of Non-Crystalline Solids, 2002, 299-302, 767-771.	3.1	29
22	Characterization of the mechanical properties of qPlus sensors. Beilstein Journal of Nanotechnology, 2013, 4, 1-9.	2.8	28
23	Light emitting silicon, recent progress. Journal of Non-Crystalline Solids, 1996, 198-200, 857-862.	3.1	27
24	Surface morphology of spin-coated As–S–Se chalcogenide thin films. Journal of Non-Crystalline Solids, 2007, 353, 1437-1440.	3.1	27
25	The physics and technological aspects of the transition from amorphous to microcrystalline and polycrystalline silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1097-1114.	0.8	26
26	Detailed structural study of low temperature mixed-phase Si films by X-TEM and ambient conductive AFM. Journal of Non-Crystalline Solids, 2006, 352, 1011-1015.	3.1	26
27	Microcrystalline Silicon - Relation of Transport Properties and Microstructure. Materials Research Society Symposia Proceedings, 1999, 557, 483.	0.1	25
28	Characterization of carbon nitride films prepared by laser reactive ablation deposition. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 747-752.	1.7	24
29	Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions. Nanoscale Research Letters, 2011, 6, 238.	5.7	24
30	On the transport properties of microcrystalline silicon. Journal of Non-Crystalline Solids, 1998, 227-230, 1006-1010.	3.1	23
31	Photoconductivity study of self-supporting porous silicon. Thin Solid Films, 1995, 255, 269-271.	1.8	22
32	Optical and Electrical Properties of Undoped Microcrystalline Silicon Deposited by the VHF-GD with Different Dilutions of Silane in Hydrogen. Materials Research Society Symposia Proceedings, 1996, 452, 761.	0.1	22
33	Charge transport in porous silicon: considerations for achievement of efficient electroluminescence. Thin Solid Films, 1996, 276, 187-190.	1.8	21
34	Rapid crystallization of amorphous silicon at room temperature. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 1785-1793.	0.6	21
35	The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition. Nanotechnology, 2010, 21, 415604.	2.6	21
36	Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy. Physica Status Solidi - Rapid Research Letters, 2011, 5, 373-375.	2.4	21

#	Article	IF	CITATIONS
37	New method of drift mobility evaluation in μc-Si:H, basic idea and comparison with time-of-flight. Journal of Non-Crystalline Solids, 2000, 266-269, 331-335.	3.1	20
38	Charge transport in microcrystalline Si – the specific features. Solar Energy Materials and Solar Cells, 2001, 66, 61-71.	6.2	20
39	Conductivity Mechanisms in Sb-Doped SnO ₂ Nanoparticle Assemblies: DC and Terahertz Regime. Journal of Physical Chemistry C, 2015, 119, 19485-19495.	3.1	19
40	Microcrystalline Silicon - Relation between Transport and Microstructure. Solid State Phenomena, 2001, 80-81, 213-224.	0.3	18
41	Amorphous/microcrystalline silicon superlattices—the chance to control isotropy and other transport properties. Applied Physics Letters, 2001, 79, 2540-2542.	3.3	18
42	Sculpturing graphene wrinkle patterns into compliant substrates. Carbon, 2019, 146, 772-778.	10.3	18
43	Impact of Cation Multiplicity on Halide Perovskite Defect Densities and Solar Cell Voltages. Journal of Physical Chemistry C, 2020, 124, 27333-27339.	3.1	18
44	Internal structure of mixed phase hydrogenated silicon thin films made at 39°C. Applied Physics Letters, 2006, 89, 051922.	3.3	17
45	On the effects of hydrogenation of thin film polycrystalline silicon: A key factor to improve heterojunction solar cells. Solar Energy Materials and Solar Cells, 2014, 122, 31-39.	6.2	17
46	Hydrogen and nitrogen bonding in silicon nitride layers deposited by laser reactive ablation: Infrared and xâ€ray photoelectron study. Applied Physics Letters, 1995, 67, 3269-3271.	3.3	16
47	Correlation of atomic force microscopy detecting local conductivity and microâ€Raman spectroscopy on polymer–fullerene composite films. Physica Status Solidi - Rapid Research Letters, 2007, 1, 193-195.	2.4	16
48	Microcrystalline silicon, grain boundaries and role of oxygen. Solar Energy Materials and Solar Cells, 2009, 93, 1444-1447.	6.2	16
49	Comment on "Current routes in hydrogenated microcrystalline silicon― Physical Review B, 2010, 81, .	3.2	16
50	Instabilities in electroluminescent porous silicon diodes. Applied Physics Letters, 1996, 69, 833-835.	3.3	15
51	Influence of combined AFM/current measurement on local electronic properties of silicon thin films. Journal of Non-Crystalline Solids, 2002, 299-302, 360-364.	3.1	15
52	Precise measurement of the deep defects and surface states in a-Si:H films by absolute CPM. Journal of Non-Crystalline Solids, 1996, 198-200, 304-308.	3.1	14
53	Ultrasharp Si nanowires produced by plasmaâ€enhanced chemical vapor deposition. Physica Status Solidi - Rapid Research Letters, 2010, 4, 37-39.	2.4	14
54	Profilometry of thin films on rough substrates by Raman spectroscopy. Scientific Reports, 2016, 6, 37859.	3.3	14

#	Article	IF	CITATIONS
55	Transport properties of microcrystalline silicon, prepared at high growth rate. Journal of Non-Crystalline Solids, 2006, 352, 1097-1100.	3.1	13
56	Microscopic study of the H2O vapor treatment of the silicon grain boundaries. Journal of Non-Crystalline Solids, 2008, 354, 2310-2313.	3.1	13
57	Conductive atomic force microscopy on carbon nanowalls. Journal of Non-Crystalline Solids, 2012, 358, 2545-2547.	3.1	13
58	Temperature induced structural rearrangements of Ag/a-C:H composite films and their dc electrical conduction. Vacuum, 1990, 40, 377-380.	3.5	12
59	Defects generation by hydrogen passivation of polycrystalline silicon thin films. Solar Energy, 2006, 80, 653-657.	6.1	12
60	Hydrogenation of polycrystalline silicon thin films. Thin Solid Films, 2006, 501, 144-148.	1.8	12
61	Two Simple Classroom Demonstrations for Scanning Probe Microscopy Based on a Macroscopic Analogy. Journal of Chemical Education, 2013, 90, 361-363.	2.3	12
62	Adsorption of oriented carborane dipoles on a silver surface. Physica Status Solidi (B): Basic Research, 2016, 253, 591-600.	1.5	12
63	Microscopic Aspects Of Charge Transport In Hydrogenated Microcrystalline Silicon. Materials Research Society Symposia Proceedings, 2001, 664, 1611.	0.1	11
64	Microscopic measurements of variations in local (photo)electronic properties in nanostructured solar cells. Solar Energy Materials and Solar Cells, 2013, 119, 228-234.	6.2	11
65	Fabrication of SnS quantum dots for solar-cell applications: Issues of capping and doping. Physica Status Solidi (B): Basic Research, 2014, 251, 1309-1321.	1.5	11
66	Correlative microscopy of radial junction nanowire solar cells using nanoindent position markers. Solar Energy Materials and Solar Cells, 2015, 135, 106-112.	6.2	11
67	Microstructure and optical properties of gold - doped plasma polymerized halocarbons. Vacuum, 1989, 39, 19-22.	3.5	10
68	Electric and Photoelectric Properties of High Porosity Silicon. Physica Status Solidi (B): Basic Research, 1995, 190, 27-33.	1.5	10
69	Spatially localized current-induced crystallization of amorphous silicon films. Journal of Non-Crystalline Solids, 2008, 354, 2305-2309.	3.1	10
70	Electrical properties of carbon nanowall films. Journal of Non-Crystalline Solids, 2012, 358, 2548-2551.	3.1	10
71	Conductivity mapping of nanoparticles by torsional resonance tunneling atomic force microscopy. Applied Physics Letters, 2012, 101, 083107.	3.3	10
72	Light trapping in thin-film solar cells measured by Raman spectroscopy. Applied Physics Letters, 2014, 105, 111106.	3.3	10

#	Article	IF	CITATIONS
73	Modulated surface of single-layer graphene controls cell behavior. Carbon, 2014, 72, 207-214.	10.3	10
74	Importance of the transport isotropy in μc-Si:H thin films for solar cells deposited at low substrate temperatures. Journal of Non-Crystalline Solids, 2002, 299-302, 395-399.	3.1	9
75	Photogenerated carriers in μc-Si:H/a-Si:H multi-layers. Journal of Non-Crystalline Solids, 2004, 338-340, 353-356.	3.1	9
76	Annealing in water vapor as a new method for improvement of silicon thin film properties. Journal of Non-Crystalline Solids, 2006, 352, 955-958.	3.1	9
77	A simple tool for quality evaluation of the microcrystalline silicon prepared at high growth rate. Thin Solid Films, 2008, 516, 4966-4969.	1.8	9
78	Photo-conductivity and Hall mobility of holes at polypyrrole–diamond interface. Diamond and Related Materials, 2010, 19, 174-177.	3.9	9
79	Photovoltaic characterization of graphene/silicon Schottky junctions from local and macroscopic perspectives. Chemical Physics Letters, 2017, 676, 82-88.	2.6	9
80	Surface and bulk light scattering in microcrystalline silicon for solar cells. Journal of Non-Crystalline Solids, 2000, 271, 152-156.	3.1	8
81	Local electronic transport in microcrystalline silicon observed by combined atomic force microscopy. Journal of Non-Crystalline Solids, 2000, 266-269, 309-314.	3.1	8
82	Structure and Properties of Silicon Thin Films Deposited at Low Substrate Temperatures. Japanese Journal of Applied Physics, 2003, 42, L987-L989.	1.5	8
83	Patterning of hydrogenated microcrystalline silicon growth by magnetic field. Applied Physics Letters, 2005, 87, 011901.	3.3	8
84	Carrier dynamics in microcrystalline silicon studied by time-resolved terahertz spectroscopy. Journal of Non-Crystalline Solids, 2006, 352, 2846-2849.	3.1	8
85	Time-resolved opto-electronic properties of poly(3-hexylthiophene-2,5-diyl): Fullerene heterostructures detected by Kelvin force microscopy. Thin Solid Films, 2010, 519, 836-840.	1.8	8
86	Relation of nanoscale and macroscopic properties of mixedâ€phase silicon thin films. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 582-586.	1.8	8
87	Characterization of Laser Patterned a-Si:H Thin Films by Combined AFM/Local Current Measurements. Physica Status Solidi A, 1998, 170, R1-R2.	1.7	7
88	Anisotropic carrier transport in preferentially oriented polycrystalline silicon films fabricated by very-high-frequency plasma enhanced chemical vapor deposition using fluorinated source gas. Journal of Non-Crystalline Solids. 2000. 266-269. 341-346.	3.1	7
89	Formation of microcrystalline silicon at low temperatures and role of hydrogen. Journal of Non-Crystalline Solids, 2004, 338-340, 287-290.	3.1	7
90	Some controversial points related to transport in microcrystalline silicon. Philosophical Magazine, 2009, 89, 2557-2571.	1.6	7

#	Article	IF	CITATIONS
91	Role of the tip induced local anodic oxidation in the conductive atomic force microscopy of mixed phase silicon thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 728-731.	0.8	7
92	Investigating inhomogeneous electronic properties of radial junction solar cells using correlative microscopy. Japanese Journal of Applied Physics, 2015, 54, 08KA08.	1.5	7
93	Direct Imaging of Dopant Distribution in Polycrystalline ZnO Films. ACS Applied Materials & Interfaces, 2017, 9, 7241-7248.	8.0	7
94	Thin films prepared by simultaneous deposition of copper and free-base phthalocyanine. European Physical Journal D, 1993, 43, 905-909.	0.4	6
95	Comments on space-charge-limited time-of-flight measurements in post-transit mode, applied to a-Si:H based solar cells. Journal of Non-Crystalline Solids, 1996, 198-200, 190-193.	3.1	6
96	High hydrogen dilution and low substrate temperature cause columnar growth of hydrogenated amorphous silicon. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 525-529.	1.8	6
97	Raman mapping of microcrystalline silicon thin films with high spatial resolution. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 704-707.	0.8	6
98	Comparative study of catalyst-induced doping and metal incorporation in silicon nanowires. Applied Physics Letters, 2019, 114, 132103.	3.3	6
99	A new approach to surface photovoltage measurements on hydrogenated microcrystalline silicon layers. Philosophical Magazine Letters, 2001, 81, 405-410.	1.2	5
100	Surface photovoltage measurements in μc-Si:H: Manifestation of the bottom space charge region. Journal of Applied Physics, 2002, 92, 2323-2329.	2.5	5
101	Silicon thin films deposited at very low substrate temperatures. Thin Solid Films, 2003, 442, 163-166.	1.8	5
102	Mapping of mechanical stress in silicon thin films on silicon cantilevers by Raman microspectroscopy. Journal of Non-Crystalline Solids, 2008, 354, 2235-2237.	3.1	5
103	Thin film polycrystalline Si solar cells studied in transient regime by optical pump–terahertz probe spectroscopy. Applied Physics Letters, 2015, 107, 233901.	3.3	5
104	Metal-doped hard carbon films. International Journal of Electronics, 1994, 76, 937-940.	1.4	4
105	Detection of bottom depletion layer and its influence on surface photovoltage measurement in \hat{l} /4c-Si:H. Thin Solid Films, 2001, 383, 271-273.	1.8	4
106	Microcrystalline silicon prepared at magnetic field modified nucleation. Journal of Non-Crystalline Solids, 2006, 352, 901-905.	3.1	4
107	Local photoconductivity of microcrystalline silicon thin films excited by 442nm HeCd laser measured by conductive atomic force microscopy. Journal of Non-Crystalline Solids, 2012, 358, 2082-2085.	3.1	4
108	Nanoimprint-textured Glass Superstrates for Light Trapping in Crystalline Silicon thin-film Solar Cells. Energy Procedia, 2015, 84, 118-126.	1.8	4

#	Article	IF	CITATIONS
109	Passivating contacts for silicon solar cells with 800 °C stability based on tunnel-oxide and highly crystalline thin silicon layer. , 2016, , .		4
110	Phosphate content influence on structural, spectroscopic, and lasing properties of Er,Yb-doped potassium-lanthanum phosphate glasses. Optical Engineering, 2016, 55, 047102.	1.0	4
111	Effects of nanowire size and geometry on silicon nanowire array thin film solar cells. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 011401.	1.2	4
112	Local Photovoltaic Properties of Graphene–Silicon Heterojunctions. Physica Status Solidi (B): Basic Research, 2018, 255, 1800305.	1.5	4
113	Plasma polymerized PVCa and composite Au/PVCa films and their physical propertiesâ€. International Journal of Electronics, 1991, 70, 509-513.	1.4	3
114	Ion cluster beam deposition of phthalocyanine films. International Journal of Electronics, 1992, 73, 1051-1053.	1.4	3
115	Light-emitting Si prepared by laser annealing of a-Si:H. Thin Solid Films, 1995, 255, 302-304.	1.8	3
116	Thin nanocomposite films of phthalocyanines and metals. Vacuum, 1998, 50, 191-194.	3.5	3
117	Crystallographic properties of grain size-controlled polycrystalline silicon thin films deposited on alumina substrate. Journal of Crystal Growth, 2009, 311, 789-793.	1.5	3
118	Position measurement in standing wave interferometer for metrology of length. , 2011, , .		3
119	Tuning of the gold work function by carborane films studied using density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 6178-6185.	2.8	3
120	Nucleation and growth of metal-catalyzed silicon nanowires under plasma. Nanotechnology, 2020, 31, 225601.	2.6	3
121	Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene. Nanomaterials, 2020, 10, 589.	4.1	3
122	Characterization of hydrogen contained in passivated poly-Si and microcrystalline-Si by ERDA technique. Surface and Interface Analysis, 2006, 38, 819-822.	1.8	2
123	A simple quality factor for characterization of thin silicon films. Journal of Non-Crystalline Solids, 2008, 354, 2227-2230.	3.1	2
124	Optoelectronic performance of poly(<i>p</i> â€phenylenevinylene)â€based heterostructures evaluated by scanning probe techniques. Physica Status Solidi (B): Basic Research, 2009, 246, 2828-2831.	1.5	2
125	Preparation and testing of silicon nanowires. Canadian Journal of Physics, 2014, 92, 819-821.	1.1	2
126	Role of a‣i:H in lateral growth of crystalline silicon nanowires using Pb and In catalysts. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1821-1825.	1.8	2

#	Article	IF	CITATIONS
127	Nanostructural composites of phthalocyanine and metals. European Physical Journal D, 1997, 47, 461-465.	0.4	1
128	Reexamination of high drift mobility a-Si:H. Journal of Non-Crystalline Solids, 1998, 227-230, 229-232.	3.1	1
129	Properties of amorphous carbon films characterized by laser desorption time of flight mass spectroscopy. Journal of Non-Crystalline Solids, 1998, 227-230, 632-635.	3.1	1
130	Electroluminescent properties of a-SiOx:H alloys. Journal of Non-Crystalline Solids, 1998, 227-230, 1160-1163.	3.1	1
131	Properties of Microcrystalline Silicon Prepared at High Growth Rate. , 2006, , .		1
132	Relation between Electronic Properties and Density of Crystalline Agglomerates in Microcrystalline Silicon. Materials Research Society Symposia Proceedings, 2007, 989, 1.	0.1	1
133	Controlled growth of nanocrystalline silicon on permalloy micro-patterns. Applied Physics A: Materials Science and Processing, 2007, 88, 797-800.	2.3	1
134	LiF enhanced nucleation of the low temperature microcrystalline silicon prepared by plasma enhanced chemical vapour deposition. Thin Solid Films, 2009, 517, 6829-6832.	1.8	1
135	Contactless probing of thin film Si solar cells by time-resolving THz spectroscopy. , 2016, , .		1
136	Passivation effect of water vapour on thin film polycrystalline Si solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1969-1975.	1.8	1
137	Nanoscale Study of the Hole-Selective Passivating Contacts with High Thermal Budget Using C-AFM Tomography. ACS Applied Materials & Interfaces, 2021, 13, 9994-10000.	8.0	1
138	Precise investigation of the light-saturated defect density in amorphous silicon very thin films and solar cells. , 0, , .		0
139	Short-term degradation of porous silicon light-emitting diodes. Journal of Luminescence, 1997, 72-74, 992-993.	3.1	0
140	Thin silicon films deposited at low substrate temperatures studied by surface photovoltage technique. Thin Solid Films, 2004, 451-452, 408-412.	1.8	0
141	Structure of mixed-phase Si films studied by C-AFM and X-TEM. Journal of Physics: Conference Series, 2007, 61, 790-794.	0.4	0
142	C-AFM and X-TEM. Imaging & Microscopy, 2008, 10, 30-32.	0.1	0
143	Properties of thin film silicon, prepared at high growth rate in a wide range of thicknesses. Journal of Non-Crystalline Solids, 2008, 354, 2451-2454.	3.1	0
144	Decomposition of Mixed Phase Silicon Raman Spectra. Materials Research Society Symposia Proceedings, 2009, 1153, 1.	0.1	0

#	Article	IF	CITATIONS
145	Ultrafast carrier dynamics in microcrystalline silicon studied by time-resolved terahertz spectroscopy. , 2009, , .		0
146	Determination of Single Microcrystalline Silicon Grains Preferential Crystallographic Orientation by Polarized Raman spectroscopy. , 2010, , .		0
147	Microscopic Characterizations of Nanostructured Silicon Thin Films for Solar Cells. Materials Research Society Symposia Proceedings, 2011, 1321, 313.	0.1	0
148	Conductivity measurement of individual SnS nanoparticles by Peak Force AFM. Materials Research Society Symposia Proceedings, 2013, 1557, 1.	0.1	0
149	ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES. Acta Polytechnica, 2014, 54, 341-347.	0.6	0
150	Displacement measurement with intracavity interferometry. , 2014, , .		0
151	Interferometry in a passive Fabry-Perot cavity with the detection of a standing wave. , 2014, , .		0
152	Nanoscale characterization of ultra-thin tungsten films deposited by radio-frequency magnetron sputtering. , 2015, , .		0
153	Thin Film Polycrystalline Silicon Solar Cells Studied by Transient Terahertz Probe Spectroscopy. Energy Procedia, 2016, 102, 19-26.	1.8	0
154	Exploring silicon carbide- and silicon oxide-based layer stacks for passivating contacts to silicon solar cells. , 2017, , .		0
155	Local Photovoltaic Properties of Graphene–Silicon Heterojunctions (Phys. Status Solidi B 12/2018). Physica Status Solidi (B): Basic Research, 2018, 255, 1870144.	1.5	0
156	Local Current Measurements. , 2018, , 265-301.		0
157	Doping of the hydrogen-passivated Si(100) electronic structure through carborane adsorption studied using density functional theory. Physical Chemistry Chemical Physics, 2021, 23, 20379-20387.	2.8	0
158	Growth defects in WC:H layers for tribological applications. Vacuum, 2020, 178, 109372.	3.5	0