Alessandro Palmieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765405/publications.pdf Version: 2024-02-01

		136950	161849
151	3,745	32	54
papers	citations	h-index	g-index
233	233	233	3058
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes:  Recent Results. Chemical Reviews, 2005, 105, 933-972.	47.7	465
2	Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related Bioactive Compounds. Chemical Reviews, 2014, 114, 7108-7149.	47.7	284
3	Synthesis of 3-substituted indoles via reactive alkylideneindolenine intermediates. Organic and Biomolecular Chemistry, 2010, 8, 1259-1270.	2.8	178
4	Solventless Clay-Promoted Friedelâ^'Crafts Reaction of Indoles with α-Amido Sulfones:  Unexpected Synthesis of 3-(1-Arylsulfonylalkyl) Indoles. Organic Letters, 2006, 8, 4093-4096.	4.6	100
5	Recent developments on the chemistry of aliphatic nitro compounds under aqueous medium. Green Chemistry, 2007, 9, 823.	9.0	70
6	A microfluidic flow chemistry platform for organic synthesis: the Hofmann rearrangement. Tetrahedron Letters, 2009, 50, 3287-3289.	1.4	70
7	Highly efficient one- or two-step sequences for the synthesis of fine chemicals from versatile nitroalkanes. Tetrahedron, 2007, 63, 12099-12121.	1.9	69
8	Simplified Synthesis of 3-(1-Arylsulfonylalkyl) Indoles and Their Reaction with Reformatsky Reagents. Journal of Organic Chemistry, 2007, 72, 1863-1866.	3.2	61
9	Use of heterogeneous catalyst KG-60-NEt2 in Michael and Henry reactions involving nitroalkanes. Tetrahedron Letters, 2003, 44, 2271-2273.	1.4	60
10	Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food and Chemical Toxicology, 2020, 136, 111037.	3.6	60
11	Reaction of 3â€(1â€Arylsulfonylalkyl)â€indoles with Easily Enolisable Derivatives Promoted by Potassium Fluoride on Basic Alumina. Advanced Synthesis and Catalysis, 2008, 350, 129-134.	4.3	59
12	Acyclic α-nitro ketones: a versatile class of α-functionalized ketones in organic synthesis. Tetrahedron, 2005, 61, 8971-8993.	1.9	55
13	Conjugate Addition of Indoles to Nitroalkenes Promoted by Basic Alumina in Solventless Conditions. Advanced Synthesis and Catalysis, 2006, 348, 191-196.	4.3	54
14	Visible Light Promoted Metal- and Photocatalyst-Free Synthesis of Allylarenes. Journal of Organic Chemistry, 2017, 82, 10687-10692.	3.2	50
15	β -Nitroacrylates as an Emerging, Versatile Class of Functionalized Nitroalkenes for the Synthesis of a Variety of Chemicals. Current Organic Chemistry, 2010, 14, 65-83.	1.6	48
16	Fast, mild, eco-friendly synthesis of polyfunctionalized pyrroles from \hat{I}^2 -nitroacrylates and \hat{I}^2 -enaminones. Green Chemistry, 2011, 13, 3333.	9.0	48
17	One-Pot Synthesis of 1,3-Dinitroalkanes under Heterogeneous Catalysis. Synthesis, 2004, 2004, 1938-1940.	2.3	45
18	Investigation into the Allylation Reactions of Aldehydes Promoted by the CeCl3·7H2Oâ^'Nal System as a Lewis Acid. Journal of Organic Chemistry, 2004, 69, 1290-1297.	3.2	45

#	Article	IF	CITATIONS
19	Solventâ€Free Nonâ€Covalent Organocatalysis: Enantioselective Addition of Nitroalkanes to Alkylideneindolenines as a Flexible Gateway to Optically Active Tryptamine Derivatives. Advanced Synthesis and Catalysis, 2012, 354, 1373-1380.	4.3	43
20	Nitroalkanes and ethyl glyoxalate as common precursors for the preparation of both β-keto esters and α,β-unsaturated esters. Tetrahedron Letters, 2004, 45, 7027-7029.	1.4	41
21	Tryptophol and derivatives: natural occurrence and applications to the synthesis of bioactive compounds. Natural Product Reports, 2019, 36, 490-530.	10.3	41
22	Efficient two-step sequence for the synthesis of 2,5-disubstituted furan derivatives from functionalized nitroalkanes: successive Amberlyst A21- and Amberlyst 15-catalyzed processes. Chemical Communications, 2010, 46, 6165.	4.1	40
23	Nitroalkanes as new, ideal precursors for the synthesis of benzene derivatives. Chemical Communications, 2008, , 2975.	4.1	36
24	Recent synthetic applications of α-amido sulfones as precursors of N-acylimino derivatives. Organic Chemistry Frontiers, 2019, 6, 2142-2182.	4.5	36
25	β-Nitroacrylates as Key Starting Materials for the Uncatalysed One-Pot Synthesis of Polyfunctionalized Dihydroquinoxalinone Derivatives, via an anti-Michael Reaction. Synlett, 2009, 2009, 965-967.	1.8	35
26	Nitroalkanes as Key Compounds for the Synthesis of Amino Derivatives. Current Organic Chemistry, 2011, 15, 1482-1506.	1.6	35
27	Recent Advances in the Synthesis of Unsymmetrical Bisindolylmethane Derivatives. Synthesis, 2019, 51, 829-841.	2.3	35
28	One pot synthesis of 3,5-alkylated acetophenone and methyl benzoate derivatives via an anionic domino process. Chemical Communications, 2005, , 2633.	4.1	34
29	Continuous flow based catch and release protocol for the synthesis of α-ketoesters. Beilstein Journal of Organic Chemistry, 2009, 5, 23.	2.2	34
30	Flow Synthesis of Substituted Î³â€Łactones by Consecutive Photocatalytic/Reductive Reactions. Advanced Synthesis and Catalysis, 2014, 356, 753-758.	4.3	33
31	High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder. Journal of Power Sources, 2016, 332, 79-87.	7.8	33
32	Neutral alumina catalysed synthesis of 3-nitro-1,2-dihydroquinolines and 3-nitrochromenes, under solvent-free conditions, via tandem process. Green Chemistry, 2005, 7, 825.	9.0	32
33	Improved chemoselective, ecofriendly conditions for the conversion of primary alkyl halides into nitroalkanes under PEG400. Green Chemistry, 2008, 10, 1004.	9.0	32
34	A New Oneâ€Pot Synthesis of Polysubstituted Indoles from Pyrroles and βâ€Nitroacrylates. Advanced Synthesis and Catalysis, 2011, 353, 1425-1428.	4.3	32
35	Diastereoselective Threeâ€Step Route to <i>o</i> â€(6â€Nitrocyclohexâ€3â€enâ€1â€yl)phenol and Tetrahydroâ€6 <i>H</i> â€benzo[<i>c</i>]chromenâ€6â€ol Derivatives from Salicylaldehydes. European Journal of Organic Chemistry, 2011, 2011, 2874-2884.	2.4	32
36	Synthetic Procedures for the Preparation of Nitroalkanes. Advanced Synthesis and Catalysis, 2018, 360, 2240-2266.	4.3	32

#	Article	IF	CITATIONS
37	Synthetic Applications of Nitroalkanes Promoted by Solid Catalysis: Recent Results. Current Organic Chemistry, 2006, 10, 2145-2169.	1.6	31
38	Cetyltrimethylammonium hydroxide (CTAOH) as a general, ecofriendly catalyst for the formation of carbon–carbon bond through nitroalkanes. Tetrahedron, 2004, 60, 2799-2804.	1.9	30
39	A Photochemical Route to Benzo[<i>a</i>]carbazoles <i>via</i> Domino Elimination/Electrocyclization of 2â€Arylâ€3â€(1â€tosylalkyl)indoles. Advanced Synthesis and Catalysis, 2013, 355, 643-646.	4.3	30
40	Potassium Fluoride/Basic Alumina as Far Superior Heterogeneous Catalyst for the Chemoselective Conjugate Addition of Nitroalkanes to Electron-Poor Alkenes Having Two Electron-Withdrawing Groups in α- and β-Positions. Advanced Synthesis and Catalysis, 2006, 348, 1154-1156.	4.3	29
41	Uncatalyzed, anti-Michael addition of amines to β-nitroacrylates: practical, eco-friendly synthesis of β-nitro-α-amino esters. Tetrahedron Letters, 2008, 49, 3865-3867.	1.4	29
42	A Twoâ€Step Synthesis of Unsymmetrical 1,4â€Disubstituted Carbazoles from Sulfonylindoles Under Heterogeneous Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 2459-2462.	4.3	29
43	βâ€Nitroacrylates: A Versatile and Growing Class of Functionalized Nitroalkenes. Advanced Synthesis and Catalysis, 2019, 361, 630-653.	4.3	29
44	Sulfonyl Azoles in the Synthesis of 3-Functionalized Azole Derivatives. Chemical Record, 2016, 16, 1353-1379.	5.8	27
45	A General Procedure for theOne-pot Preparation of Polyfunctionalized Nitrocyclopropanes. Synlett, 2003, 2003, 1704-1706.	1.8	26
46	Formation of Carbon arbon Double Bonds: Recent Developments <i>via</i> Nitrous Acid Elimination (NAE) from Aliphatic Nitro Compounds. Advanced Synthesis and Catalysis, 2019, 361, 5070-5097.	4.3	25
47	Fast diastereoselective Baylis–Hillman reaction by nitroalkenes: synthesis of di- and triene derivatives. Tetrahedron, 2004, 60, 4995-4999.	1.9	24
48	Improved preparation of alkyl 2-(3-indolyl)-3-nitroalkanoates under fully heterogeneous conditions: stereoselective synthesis of alkyl (E)-2-(3-indolyl)-2-alkenoates. Tetrahedron, 2008, 64, 5435-5441.	1.9	24
49	Isolute® Si-carbonate catalyzes the nitronate addition to both aldehydes and electron-poor alkenes under solvent-free conditions. Green Chemistry, 2008, 10, 541.	9.0	24
50	Preparation of 2 <i>H</i> â€1,4â€Benzoxazinâ€2â€one Derivatives under Heterogeneous Conditions <i>via</i> Domino Process. Advanced Synthesis and Catalysis, 2009, 351, 2611-2614.	4.3	24
51	Reaction of carbon nucleophiles with alkylideneindazolium and alkylideneindolium ions generated from their 3-(1-arylsulfonylalkyl) indazole and indole precursors. Organic and Biomolecular Chemistry, 2010, 8, 706-712.	2.8	24
52	JandaJel as a polymeric support to improve the catalytic efficiency of immobilized-1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) under solvent-free conditions. Green Chemistry, 2011, 13, 3181.	9.0	24
53	Synthesis and Functionalization of Unsymmetrical Arylsulfonyl Bisindoles and Bisbenzazoles. Advanced Synthesis and Catalysis, 2012, 354, 3539-3544.	4.3	24
54	Low impact synthesis of β-nitroacrylates under fully heterogeneous conditions. Green Chemistry, 2013, 15, 2344.	9.0	24

ALESSANDRO PALMIERI

#	Article	IF	CITATIONS
55	Michael addition of α-nitro ketones to conjugated enones under solventless conditions using silica. Green Chemistry, 2003, 5, 475-476.	9.0	23
56	Synthesis of fine chemicals by the conjugate addition of nitroalkanes to electrophilic alkenes. Pure and Applied Chemistry, 2006, 78, 1857-1866.	1.9	23
57	Highly Convenient, One-Pot Synthesis of Nitriles from Aldehydes Using the NH2OH·HCl/Nal/MeCN System. Synlett, 2003, 2003, 1841-1843.	1.8	22
58	One-pot synthesis of 3-alkyl-2,4-dinitrocyclohexanols, under solventless conditions using basic alumina. Green Chemistry, 2005, 7, 828.	9.0	22
59	Boosting Conjugate Addition to Nitroolefins Using Lithium Tetraorganozincates: Synthetic Strategies and Structural Insights. Chemistry - A European Journal, 2020, 26, 8742-8748.	3.3	21
60	Synthesis of 3-(2-nitroalkyl) indoles by reaction of 3-(1-arylsulfonylalkyl) indoles with nitroalkanes. Tetrahedron Letters, 2007, 48, 5653-5656.	1.4	20
61	Regioselective Synthesis of 3â€Substituted Pyrroles by Nucleophilic Addition of 3â€(1â€Arylsulfonylalkyl) Pyrroles Activated under Basic or Acid Conditions. Chemistry - A European Journal, 2011, 17, 7183-7187.	3.3	20
62	Michael Reaction of Nitroalkanes with βâ€Nitroacrylates under a Solid Promoter: Advanced Regio―and Diastereoselective Synthesis of Nitroâ€Functionalized α,βâ€Unsaturated Esters and 1,3â€Butadieneâ€2â€carboxylates. Advanced Synthesis and Catalysis, 2010, 352, 1485-1492.	4.3	19
63	Arylsulfonyl Group: Activating Properties and Recent Synthetic Applications. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1032-1045.	1.6	19
64	Synthesis of 3â€(Tosylalkyl)indazoles and their Desulfonylation Reactions – A New Entry to 3‧ubstituted Indazoles by an Unprecedented Friedel–Crafts Process. European Journal of Organic Chemistry, 2009, 2009, 3184-3188.	2.4	18
65	Ketosulfonyl indoles in the regiodefined synthesis of tryptophols and related indole derivatives. Organic and Biomolecular Chemistry, 2012, 10, 3486.	2.8	18
66	One-pot synthesis of alkyl pyrrole-2-carboxylates starting from \hat{I}^2 -nitroacrylates and primary amines. RSC Advances, 2015, 5, 4210-4213.	3.6	18
67	Unprecedented two-step synthesis of symmetrical diarylamines from 2-alkyl-1,3-dinitropropanes. Tetrahedron Letters, 2006, 47, 2295-2297.	1.4	16
68	Eco-friendly synthesis of β-nitro ketones from conjugated enones: an important improvement of the Miyakoshi procedure. Green Chemistry, 2011, 13, 2026.	9.0	16
69	One-pot synthesis of polyfunctionalized α,β-unsaturated nitriles from nitroalkanes. Tetrahedron Letters, 2003, 44, 9033-9034.	1.4	15
70	SiO2-TBD as New Heterogeneous Catalyst for the Nef Conversion of ÂSecondary Nitroalkanes under Neat Conditions. Synlett, 2006, 2006, 1849-1850.	1.8	15
71	Diastereoselective, Oneâ€Pot Synthesis of Polyfunctionalized Bicyclo[3.3.1]nonanes by an Anionic Domino Process. Chemistry - A European Journal, 2009, 15, 7867-7870.	3.3	15
72	β-Nitro acrylic esters as precursors for the one pot synthesis of polyfunctionalized α,β-unsaturated esters. Tetrahedron Letters, 2005, 46, 1245-1246.	1.4	14

#	Article	IF	CITATIONS
73	Stereoselective Synthesis of Functionalized Chiral 2â€Nitrocyclohexanecarboxylic Esters <i>via</i> Catalytic Dienamine Addition to βâ€6ubstituted βâ€Nitroacrylates. Advanced Synthesis and Catalysis, 2014, 356, 493-500.	4.3	14
74	Conjugate addition of nitroalkanes to dimethyl maleate. Regioselective formation of both monoesters of 2-alkylsuccinic acids. Tetrahedron, 2003, 59, 7283-7289.	1.9	13
75	β-Nitroacrylates and silyl enol ethers as key starting materials for the synthesis of polyfunctionalized β-nitro esters and 1,2-oxazine-2-oxides. Tetrahedron, 2009, 65, 2916-2920.	1.9	13
76	β-Nitroacrylates as key building blocks for the synthesis of alkyl 3-substituted 5-oxopiperazine-2-carboxylates under fully heterogeneous conditions. Monatshefte Für Chemie, 2013, 144, 509-514.	1.8	13
77	Synthesis and practical applications of 2-(2-nitroalkyl)pyrroles. Organic and Biomolecular Chemistry, 2020, 18, 4533-4546.	2.8	13
78	A Novel and Practical Continuous Flow Chemical Synthesis of Cannabidiol (CBD) and its CBDV and CBDB Analogues. European Journal of Organic Chemistry, 2021, 2021, 1286-1289.	2.4	13
79	Enantioselective Catalyzed Synthesis of Amino Derivatives Using Electrophilic Openâ€Chain <i>N</i> â€Activated Ketimines. Advanced Synthesis and Catalysis, 2021, 363, 3655-3692.	4.3	13
80	β-Nitroacrylates as key starting materials for the one-pot synthesis of densely functionalized penta-substituted anilines. Tetrahedron, 2012, 68, 8231-8235.	1.9	12
81	Synthesis of 3â€{2â€Nitroalkyl)pyrroles from Sulfonylpyrroles and their Conversion to 6â€Azaindole Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 3285-3289.	4.3	12
82	Synthesis and Characterization of Vanillinâ€Templated Fe ₂ O ₃ Nanoparticles as a Sustainable Anode Material for Liâ€ion Batteries. ChemElectroChem, 2019, 6, 1915-1920.	3.4	12
83	Synthesis of Heterocyclic Systems Starting from Carbonyl and Carboxyl Functionalized Nitro Compounds by Oneâ€Pot Processes. European Journal of Organic Chemistry, 2020, 2020, 4247-4260.	2.4	12
84	Nitrocompounds as useful reagents for the synthesis of dicarbonyl derivatives. Arkivoc, 2006, 2006, 127-152.	0.5	12
85	Solvent-Free, anti-Michael Addition of Active Methylene Derivatives to β-Nitroacrylates: Eco-Friendly, Chemoselective Synthesis of Polyfunctionalized Nitroalkanes. Synlett, 2009, 2009, 268-270.	1.8	11
86	Nitroaldol (Henry) reaction of 2-oxoaldehydes with nitroalkanes as a strategic step for a useful, one-pot synthesis of 1,2-diketones. RSC Advances, 2015, 5, 36652-36655.	3.6	11
87	Twoâ€Step Synthesis of Polysubstituted 6â€Nitroindoles under Flow Chemical and Microwave Conditions. Advanced Synthesis and Catalysis, 2017, 359, 3407-3413.	4.3	11
88	Special Issue "Recent Synthetic Aspects on the Chemistry of Nitro, Nitroso and Amino Compounds― Molecules, 2017, 22, 9.	3.8	11
89	A New Valuable Synthesis of Polyfunctionalized Furans Starting from β-Nitroenones and Active Methylene Compounds. Molecules, 2019, 24, 4575.	3.8	11
90	Sustainable and fast synthesis of functionalized quinoxalines promoted by natural deep eutectic solvents (NADESs). Green Chemistry, 2022, 24, 3629-3633.	9.0	11

ALESSANDRO PALMIERI

#	Article	IF	CITATIONS
91	1,3â€Dinitro Alkanes: An Emerging Class of Bidentate Compounds. European Journal of Organic Chemistry, 2014, 2014, 1805-1816.	2.4	10
92	A New One-Pot Synthesis of Quinoline-2-carboxylates under Heterogeneous Conditions. Molecules, 2016, 21, 776.	3.8	10
93	Development of new and efficient copper(<scp>ii</scp>) complexes of hexyl bis(pyrazolyl)acetate ligands as catalysts for allylic oxidation. Dalton Transactions, 2020, 49, 15622-15632.	3.3	10
94	δ-Nitroalkanols as precursors for the one-pot synthesis of substituted tetrahydrofurans. Tetrahedron Letters, 2003, 44, 2795-2797.	1.4	9
95	A New, One Pot Synthesis of Alkylated Methyl Tri- and Tetracarboxylate DerivativesÂ-by Nitrolkanes. Synthesis, 2004, 2004, 605-609.	2.3	9
96	A New Heterogeneous One-Pot Process for Both Nitroaldol (Henry) and Michael Reactions from Primary Haloalkanes via Nitroalkanes. Synlett, 2007, 2007, 3019-3021.	1.8	9
97	Metalâ€Free Synthesis of Imido Derivatives by Direct Oxidation of αâ€Amido Sulfones. European Journal of Organic Chemistry, 2010, 2010, 5085-5089.	2.4	9
98	Anionic Domino Process for the One-Pot, Diastereoselective Synthesis of Dihydropyranols from β-Nitroalcohols. Synlett, 2004, 2004, 2618-2620.	1.8	8
99	Three-Step Synthesis of Highly Substituted Phenols from 1,3-Dinitropropanes. Synlett, 2006, 2006, 1956-1958.	1.8	8
100	Acidic Alumina as a Useful Heterogeneous Catalyst in the Michael Reaction of β-Dicarbonyl Derivatives with Conjugated Nitroalkenes. Synthesis, 2007, 2007, 3017-3020.	2.3	8
101	Multi-Step Continuous Flow Synthesis of β/γ-Substituted Ketones. ChemPhotoChem, 2018, 2, 847-850.	3.0	8
102	βâ€Nitroacrylates as Starting Materials of Thiopheneâ€2 arboxylates Under Continuous Flow Conditions. Advanced Synthesis and Catalysis, 2019, 361, 2042-2047.	4.3	8
103	The First Synthesis of Pentadecyl 6-Hydroxydodecanoate a Novel Compound Isolated from the Leaves ofArtabotrys odoratissimus. Synthesis, 2003, 2003, 0665-0667.	2.3	7
104	Application of the Nitroaldol (Henry) Reaction for a Two-Step Sequence in the Synthesis of Polyfunctionalized Dihydropyran Derivatives. Synlett, 2007, 2007, 2430-2432.	1.8	7
105	Base-free conjugate addition of aliphatic nitro compounds to enones inÂBmimNTf2: a recyclable synthesis of Î ³ -nitro ketones. Tetrahedron, 2012, 68, 5852-5856.	1.9	7
106	β-Nitroacrylates as Useful Building Blocks for the Synthesis of Alkyl Indole-2-Carboxylates. Synlett, 2013, 25, 128-132.	1.8	7
107	Stereoselective Addition of 1,3â€Ðiketones to βâ€Nitroacrylates Catalyzed by Chiral Metalâ€Free Bifunctional Catalysts. Asian Journal of Organic Chemistry, 2014, 3, 416-420.	2.7	7
108	Synthesis of β-Nitro Ketones by Chemoselective Reduction of β-Nitro Enones under Solid Heterogeneous Catalysis. Synthesis, 2017, 49, 2980-2984.	2.3	7

#	Article	IF	CITATIONS
109	A new, low impact and efficient synthesis of ω-nitro esters under solid heterogeneous catalysis. Green Chemistry, 2017, 19, 4956-4960.	9.0	7
110	Diastereoselective Isomerization of (E)â€Î²â€Nitroenones into βâ€Nitroâ€Î²,γâ€Unsaturated Ketones under Microwave Conditions. Advanced Synthesis and Catalysis, 2020, 362, 4680-4686.	4.3	7
111	Thermal Stability Evaluation of Nitroalkanes with Differential Scanning Calorimetry. Organic Process Research and Development, 2021, 25, 781-788.	2.7	7
112	Visibleâ€Lightâ€Driven Competitive Stereo―and Regioisomerization of (<i>E</i>)â€Î²â€Nitroenones. ChemPhotoChem, 2021, 5, 871-875.	3.0	7
113	Double Functionalization of <i>N</i> -Boc-3-(Tosylmethyl)indole Exploiting the ÂActivating Properties of the Tosyl Group. Synlett, 2008, 2008, 1845-1851.	1.8	6
114	Easy and direct conversion of tosylates and mesylates into nitroalkanes. Beilstein Journal of Organic Chemistry, 2013, 9, 533-536.	2.2	6
115	Reaction of α-amido sulfones with functionalized nitrocompounds: a new two-step synthesis of N-alkoxycarbonyl-2,5-disubstituted pyrroles. RSC Advances, 2014, 4, 43258-43261.	3.6	6
116	Oxidative Conversion of Sulfonyl Indoles into 3-Alkylidene-2-oxindoles under Flow Chemical Conditions. Synthesis, 2018, 50, 371-376.	2.3	6
117	Chemoselective SN2′ reaction of nitroalkanes to dialkyl 2-(bromomethyl)fumarates under cetyltrimethylammonium hydroxide (CTAOH) catalysis. Tetrahedron Letters, 2010, 51, 1233-1235.	1.4	5
118	A new fully heterogeneous synthesis of pyrrole-2-acetic acid derivatives. RSC Advances, 2016, 6, 44341-44344.	3.6	5
119	Synthesis of Nitro Alcohols by Riboflavin Promoted Tandem Nefâ€Henry Reactions on Nitroalkanes. Advanced Synthesis and Catalysis, 2021, 363, 742-746.	4.3	5
120	Synthesis of Unsymmetrical Bisindolylmethanes by Reaction of Indolylmagnesium Bromides with Sulfonyl Indoles. Advanced Synthesis and Catalysis, 2020, 362, 1509-1513.	4.3	5
121	Michael Addition of Nitroalkanes to Optically Active Acrylates Mediated by Cetyltrimethylammonium Hydroxide (CTAOH). Letters in Organic Chemistry, 2004, 1, 335-339.	0.5	4
122	β-Nitroacrylates as Precursors of Tetrasubstituted Furans in a One-Pot Process and under Acidic Solvent-Free Conditions. Synlett, 2010, 2010, 2468-2470.	1.8	4
123	3-Alkylated indoles by reduction of sulfonyl indoles under flow chemical conditions. Arkivoc, 2020, 2019, 69-79.	0.5	4
124	An Improved, Fully Heterogeneous, Diastereoselective Synthesis of (Z)-α-Bromonitroalkenes. Synlett, 2012, 24, 114-116.	1.8	3
125	A New Synthesis of Polyfunctionalized 2-Alkyl-1,4-diketones. Synlett, 2015, 26, 1207-1212.	1.8	3
126	A Practical and Efficient Synthesis of (±)-Anatabine. Synthesis, 2018, 50, 1921-1925.	2.3	3

#	Article	IF	CITATIONS
127	A New and Effective Oneâ€Pot Synthesis of Polysubstituted Carbazoles Starting from βâ€Nitroâ€Î²,γâ€Unsaturatedâ€Ketones and Indoles. Asian Journal of Organic Chemistry, 2021, 10, 2334-2337.	2.7	3
128	β-Nitroacrylates: New Key Precursors of Indole-2-Carboxylates via Fischer Indole Synthesis. Applied Sciences (Switzerland), 2019, 9, 5168.	2.5	2
129	Visibleâ€Lightâ€Driven Photocatalystâ€Free Preparation of (Z) βâ€Nitroacrylate Isomers. European Journal of Organic Chemistry, 0, , .	2.4	2
130	Highly Convenient, One-Pot Synthesis of Nitriles from Aldehydes Using the NH2OH×HCl/Nal/MeCN System ChemInform, 2004, 35, no.	0.0	1
131	Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results. ChemInform, 2005, 36, no.	0.0	1
132	Synthetic Approach to the Preparation of (2-Acetoxy)allyl Nitro Compounds. Journal of Organic Chemistry, 2018, 83, 12855-12862.	3.2	1
133	Use of Heterogeneous Catalyst KG-60-NEt2 in Michael and Henry Reactions Involving Nitroalkanes ChemInform, 2003, 34, no.	0.0	0
134	δ-Nitroalkanols as Precursors for the One-Pot Synthesis of Substituted Tetrahydrofurans ChemInform, 2003, 34, no.	0.0	0
135	Conjugate Addition of Nitroalkanes to Dimethyl Maleate. Regioselective Formation of Both Monoesters of 2-Alkylsuccinic Acids ChemInform, 2003, 34, no.	0.0	0
136	Cetyltrimethylammonium Hydroxide (CTAOH) as a General, Ecofriendly Catalyst for the Formation of Carbon—Carbon Bond Through Nitroalkanes ChemInform, 2004, 35, no.	0.0	0
137	A General Procedure for the One-Pot Preparation of Polyfunctionalized Nitrocyclopropanes ChemInform, 2004, 35, no.	0.0	0
138	One-Pot Synthesis of Polyfunctionalized α,β-Unsaturated Nitriles from Nitroalkanes ChemInform, 2004, 35, no.	0.0	0
139	Investigation into the Allylation Reactions of Aldehydes Promoted by the CeCl3×7H2O—Nal System as a Lewis Acid ChemInform, 2004, 35, no.	0.0	0
140	A New, One Pot Synthesis of Alkylated Methyl Tri- and Tetracarboxylate Derivatives by Nitroalkanes ChemInform, 2004, 35, no.	0.0	0
141	Fast Diastereoselective Baylis—Hillman Reaction by Nitroalkenes: Synthesis of Di- and Triene Derivatives ChemInform, 2004, 35, no.	0.0	0
142	One-Pot Synthesis of 1,3-Dinitroalkanes under Heterogeneous Catalysis ChemInform, 2004, 35, no.	0.0	0
143	Fast diastereoselective Baylis–Hillman reaction by nitroalkanes: synthesis of di―and triene derivatives[Tetrahedron 60 (2004) 4995]. Tetrahedron, 2004, 60, 7793.	1.9	0
144	Nitroalkanes and Ethyl Glyoxalate as Common Precursors for the Preparation of Both ?-Keto Esters and ?,?-Unsaturated Esters ChemInform, 2005, 36, no.	0.0	0

ALESSANDRO PALMIERI

#	Article	IF	CITATIONS
145	Anionic Domino Process for the One-Pot, Diastereoselective Synthesis of Dihydropyranols from ?-Nitroalcohols ChemInform, 2005, 36, no.	0.0	Ο
146	β-Nitro Acrylic Esters as Precursors for the One-Pot Synthesis of Polyfunctionalized α,β-Unsaturated Esters ChemInform, 2005, 36, no.	0.0	0
147	One Pot Synthesis of 3,5-Alkylated Acetophenone and Methyl Benzoate Derivatives via an Anionic Domino Process ChemInform, 2005, 36, no.	0.0	0
148	Acyclic α-Nitro Ketones: A Versatile Class of α-Functionalized Ketones in Organic Synthesis. ChemInform, 2005, 36, no.	0.0	0
149	An Improved, Fully Heterogeneous, Diastereoselective Synthesis of (Z)-α-Bromonitroalkenes. Synlett, 2013, 24, 268-268.	1.8	0
150	Aliphatic Nitro Compounds as Key Precursors for the Eco-Friendly Synthesis of Fine Chemicals under Solvent-Free Conditions. Series on Chemistry, Energy and the Environment, 2018, , 135-175.	0.3	0
151	A Practical and Efficient Conversion of Luteolin into Luteoloside. Synthesis, 0, 53, .	2.3	0