Huei-Wen Ferng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7654005/publications.pdf

Version: 2024-02-01

933447 839539 60 473 10 18 citations g-index h-index papers 60 60 60 415 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Connection-wise end-to-end performance analysis of queueing networks with MMPP inputs. Performance Evaluation, 2001, 43, 39-62.	1.2	50
2	Energy-Efficient Routing Protocol for Wireless Sensor Networks with Static Clustering and Dynamic Structure. Wireless Personal Communications, 2012, 65, 347-367.	2.7	40
3	Departure Processes of BMAP/G/1 Queues. Queueing Systems, 2001, 39, 109-135.	0.9	39
4	Design of Novel Node Distribution Strategies in Corona-Based Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2011, 10, 1297-1311.	5.8	31
5	<pre><last_page></last_page> <publisher_item> <item_number item_number_type="arNumber"></item_number> </publisher_item> <doi_data> <doi> </doi> <resource>http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber= </resource> </doi_data> <iournal_article> <titles> <title><!!CDATA[Uplink capacity enhancement for an</pre></td><td>4.1</td><td>21</td></tr><tr><td>6</td><td>integrated HAPS-terrestrial CDMA system. IEEE Communications Letters, 2007, 11, 10-12. On security of wireless sensor networks: a data authentication protocol using digital signature. Wireless Networks, 2017, 23, 1113-1131.</td><td>3.0</td><td>18</td></tr><tr><td>7</td><td>A low energy consumption routing protocol for mobile sensor networks with a path-constrained mobile sink., 2016,,.</td><td></td><td>17</td></tr><tr><td>8</td><td>Key management protocol with end-to-end data security and key revocation for a multi-BS wireless sensor network. Wireless Networks, 2014, 20, 625-637.</td><td>3.0</td><td>16</td></tr><tr><td>9</td><td>Exploring Flexibility of DRX in LTE/LTE-A: Design of Dynamic and Adjustable DRX. IEEE Transactions on Mobile Computing, 2018, 17, 99-112.</td><td>5.8</td><td>16</td></tr><tr><td>10</td><td>An Improved Traffic Rerouting Strategy Using Real-Time Traffic Information and Decisive Weights. IEEE Transactions on Vehicular Technology, 2021, 70, 9741-9751.</td><td>6.3</td><td>14</td></tr><tr><td>11</td><td>Messages Classification and Dynamic Batch Verification Scheme for VANETs. IEEE Transactions on Mobile Computing, 2021, 20, 1156-1172.</td><td>5.8</td><td>12</td></tr><tr><td>12</td><td>Designing a fair scheduling mechanism for IEEE 802.11 wireless LAns. IEEE Communications Letters, 2005, 9, 301-303.</td><td>4.1</td><td>11</td></tr><tr><td>13</td><td>A dynamic resource reservation scheme with mobility prediction for wireless multimedia networks. , <math>0, , . \\</math></td><td></td><td>10</td></tr><tr><td>14</td><td>Path-wise performance in a tree-type network: Per-stream loss probability, delay, and delay variance analyses. Performance Evaluation, 2007, 64, 55-75.</td><td>1.2</td><td>10</td></tr><tr><td>15</td><td>The departure process of discrete-time queueing systems with Markovian type inputs. Queueing Systems, 2000, 36, 201-220.</td><td>0.9</td><td>9</td></tr><tr><td>16</td><td>Modeling of Split Traffic Under Probabilistic Routing. IEEE Communications Letters, 2004, 8, 470-472.</td><td>4.1</td><td>9</td></tr><tr><td>17</td><td>A secure routing protocol for wireless sensor networks with consideration of energy efficiency. , 2012, , .</td><td></td><td>9</td></tr><tr><td>18</td><td>Fair round robin binary countdown to achieve QoS guarantee and fairness in WLANs. Wireless Networks, 2011, 17, 1259-1271.</td><td>3.0</td><td>8</td></tr></tbody></table></title></titles></iournal_article></pre>		

#	Article	IF	CITATIONS
19	Area-partitioned clustering and cluster head rotation for wireless sensor networks. , 2017, , .		8
20	A Globally Overlaid Hierarchical P2P-SIP Architecture with Route Optimization. IEEE Transactions on Parallel and Distributed Systems, 2011, 22, 1826-1833.	5.6	7
21	Enhancing WLAN location privacy using mobile behavior. Expert Systems With Applications, 2011, 38, 175-183.	7.6	7
22	Periods Scheduling Under the HCCA Mode of IEEE 802.11e. IEEE Transactions on Wireless Communications, 2014, 13, 7037-7049.	9.2	7
23	Designing a fair scheduling mechanism for IEEE 802.11 wireless LANs. IEEE Communications Letters, 2005, 9, 301-303.	4.1	6
24	An Efficient Channel Scan Scheduling Algorithm for VoIP Handoffs in WLANs. IEEE Vehicular Technology Conference, 2007, , .	0.4	6
25	Design of Fair Scheduling Schemes for the QoS-Oriented Wireless LAN. IEEE Transactions on Mobile Computing, 2009, 8, 880-894.	5.8	6
26	Projection-based localization for underwater sensor networks with consideration of layers., 2013,,.		6
27	Urgency-Based Fair Scheduling for LTE to Improve Packet Loss and Fairness: Design and Evaluation. IEEE Transactions on Vehicular Technology, 2019, 68, 2825-2836.	6.3	6
28	Design and evaluation of an LQI-based beaconless routing protocol for a heterogeneous MSN. Wireless Networks, 2020, 26, 699-721.	3.0	6
29	Filtering tricks for FSK demodulation. IEEE Signal Processing Magazine, 2005, 22, 80-82.	5.6	5
30	A time slots coordination mechanism for IEEE 802.11 WLANs. IEEE Communications Letters, 2010, 14, 360-362.	4.1	5
31	Handover scheme with enode-B pre-selection and parameter self-optimization for LTE-A heterogeneous networks. , 2016, , .		5
32	Parameter-Adaptive Dynamic and Adjustable DRX Schemes for LTE/LTE-A. IEEE Transactions on Green Communications and Networking, 2019, 3, 1035-1043.	5.5	5
33	Modeling the IEEE 802.11e HCCA mode. Wireless Networks, 2013, 19, 771-783.	3.0	4
34	Design of Predictive and Dynamic Energy-Efficient Mechanisms for IEEE 802.16e. Wireless Personal Communications, 2013, 68, 1807-1835.	2.7	4
35	Modeling and Cost Analysis of an Improved Movement-Based Location Update Scheme in Wireless Communication Networks. Wireless Personal Communications, 2014, 75, 2607-2622.	2.7	4
36	Route optimization using the distributed binding update for nested mobile networks. Wireless Communications and Mobile Computing, 2015, 15, 115-130.	1,2	4

#	Article	IF	Citations
37	QoS Violation Probability Minimization in Federating Vehicular-Fogs With Cloud and Edge Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 13270-13280.	6.3	4
38	A channel allocation scheme with dynamic priority for wireless mobile networks., 0,,.		3
39	A Scheduling-Based Delay-Tolerant Power Saving Scheme for the IEEE 802.16e Wireless MAN. IEEE Vehicular Technology Conference, 2008, , .	0.4	3
40	On-Demand Energy Transfer and Energy-Aware Polling-Based MAC for Wireless Powered Sensor Networks. Sensors, 2022, 22, 2476.	3.8	3
41	Characterization of the output of an ATM output buffer receiving self-similar traffic. , 0, , .		2
42	Traffic splitting in a network: split traffic models and applications. Computer Communications, 2004, 27, 1152-1165.	5.1	2
43	Fair Scheduling Mechanisms with QoS Consideration for the IEEE 802.11e Wireless LAN. IEEE Vehicular Technology Conference, 2007, , .	0.4	2
44	Concentric Distributed Localization Based on the Tripodal Anchor Structure and Grid Scan for Wireless Sensor Networks. Wireless Personal Communications, 2013, 68, 1707-1729.	2.7	2
45	Beaconless Geographical Routing Protocol for a Heterogeneous MSN. IEEE Transactions on Mobile Computing, 2020, , 1-1.	5.8	2
46	A delay analysis for the delivery of downstream messages in a sparse VANET. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2020, 43, 499-507.	1.1	2
47	Stability and performance analysis of wireless powered communication networks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 0, , 1748006X2110167.	0.7	2
48	A fair distributed packet scheduling algorithm for wireless LANs. , 0, , .		1
49	Study on power saving for cellular digital packet data over a random error/loss channel. , 2004, , .		1
50	A SIP-Based Mobility Management Architecture Supporting TCP with Handoff Optimization. IEEE Vehicular Technology Conference, 2007, , .	0.4	1
51	The Impact of Using Multiple HAPSs to Combat Platform Instability on Uplink CDMA Capacity. IEEE Vehicular Technology Conference, 2007, , .	0.4	1
52	Video streaming over HTTP/2: Design and evaluation of adaptive server-paced push. Journal of Communications and Networks, 2021, 23, 106-116.	2.6	1
53	An economical frequency synthesizer using interpolation techniques. , 0, , .		0
54	A class-based queueing service for IEEE 802.11e wireless networks. , 0, , .		0

#	Article	lF	CITATIONS
55	A Multicast Routing Algorithm Using Movement Prediction for Mobile Ad Hoc Networks. , 0, , .		O
56	A time multiplexing coordination mechanism on top of the IEEE 802.11 MAC layer. , 2008, , .		0
57	Design of an energy-efficient routing protocol for a corona-based wireless sensor network. , 2011, , .		O
58	A comprehensive study of path-level performance evaluation and traffic aggregation for discrete-time tandem network. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2012, 35, 349-362.	1,1	0
59	Cooperative Location Management for a Cellular Network with Ad Hoc Communication. Wireless Personal Communications, 2013, 70, 1941-1964.	2.7	0
60	Key management for a large-scale wireless sensor network. , 2014, , .		0