List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	9.5	70
2	Enhanced Sieving of C2â€Hydrocarbon from Methane by Fluoroâ€Functionalization of Inâ€MOF with Robust Stability. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
3	MOFâ€Stabilized Perfluorinated Palladium Cages Catalyze the Additiveâ€Free Aerobic Oxidation of Aliphatic Alcohols to Acids. Chemistry - A European Journal, 2022, 28, .	1.7	6
4	Epoxidation vs. dehydrogenation of allylic alcohols: Heterogenization of the VO(acac)2 catalyst in a metal-organic framework. Chemical Communications, 2022, , .	2.2	2
5	Multivariate Metal–Organic Framework/Single-Walled Carbon Nanotube Buckypaper for Selective Lead Decontamination. ACS Applied Nano Materials, 2022, 5, 5223-5233.	2.4	20
6	Metalâ€Organic Frameworks as Unique Platforms to Gain Insight of Ïfâ€Hole Interactions for the Removal of Organic Dyes from Aquatic Ecosystems. Chemistry - A European Journal, 2022, , .	1.7	4
7	Trinuclear Cobalt(II) Triple Helicate with a Multidentate Bithiazolebis(oxamate) Ligand as a Supramolecular Nanomagnet. Inorganic Chemistry, 2022, 61, 5696-5700.	1.9	4
8	Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic frameworks (M–MOFs). Molecular Catalysis, 2022, 522, 112228.	1.0	0
9	Slow magnetic relaxation in a trigonal-planar mononuclear Fe(<scp>ii</scp>) complex. Dalton Transactions, 2022, 51, 8266-8272.	1.6	3
10	Crystallographic Visualization of a Double Water Molecule Addition on a Pt 1 â€MOF during the Lowâ€ŧemperature Waterâ€Gas Shift Reaction. ChemCatChem, 2021, 13, 1195-1200.	1.8	7
11	Bioinspired Metalâ€Organic Frameworks in Mixed Matrix Membranes for Efficient Static/Dynamic Removal of Mercury from Water. Advanced Functional Materials, 2021, 31, 2008499.	7.8	43
12	Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids. Journal of the American Chemical Society, 2021, 143, 2581-2592.	6.6	74
13	Highly Efficient Removal of Neonicotinoid Insecticides by Thioether-Based (Multivariate) Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 28424-28432.	4.0	29
14	Photodegradation of Brilliant Green Dye by a Zinc bioMOF and Crystallographic Visualization of Resulting CO2. Molecules, 2021, 26, 4098.	1.7	5
15	Synthesis and Enhanced Capture Properties of a New BioMOF@SWCNTâ€BP: Recovery of the Endangered Rareâ€Earth Elements from Aqueous Systems. Advanced Materials Interfaces, 2021, 8, 2100730.	1.9	13
16	Synthesis and Enhanced Capture Properties of a New BioMOF@SWCNTâ€BP: Recovery of the Endangered Rareâ€Earth Elements from Aqueous Systems (Adv. Mater. Interfaces 16/2021). Advanced Materials Interfaces, 2021, 8, 2170089.	1.9	0
17	A Biocompatible Aspartic-Decorated Metal–Organic Framework with Tubular Motif Degradable under Physiological Conditions. Inorganic Chemistry, 2021, 60, 14221-14229.	1.9	3
18	Switching of easy-axis to easy-plane anisotropy in cobalt(<scp>ii</scp>) complexes. Inorganic Chemistry Frontiers, 2021, 8, 5158-5168.	3.0	12

#	Article	IF	CITATIONS
19	Modulating magnetic dynamics through tailoring the terminal ligands in Dy ₂ single-molecule magnets. Dalton Transactions, 2020, 49, 808-816.	1.6	16
20	A series of lanthanide(<scp>iii</scp>) metal–organic frameworks derived from a pyridyl-dicarboxylate ligand: single-molecule magnet behaviour and luminescence properties. Dalton Transactions, 2020, 49, 14123-14132.	1.6	22
21	Hydrolase–like catalysis and structural resolution of natural products by a metal–organic framework. Nature Communications, 2020, 11, 3080.	5.8	33
22	Bio-metal-organic frameworks for molecular recognition and sorbent extractionÂof hydrophilic vitamins followed byÂtheir determination usingÂHPLC-UV. Mikrochimica Acta, 2020, 187, 201.	2.5	14
23	Metal–Organic Frameworks as Chemical Nanoreactors: Synthesis and Stabilization of Catalytically Active Metal Species in Confined Spaces. Accounts of Chemical Research, 2020, 53, 520-531.	7.6	81
24	Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation, 2020, 8, 28.	1.0	14
25	Glassy PEEK-WC vs. Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi-MOF Based Mixed Matrix Membranes. Applied Sciences (Switzerland), 2020, 10, 1310.	1.3	12
26	Metal Organic Frameworks: From Material Chemistry to Catalytic Applications. RSC Energy and Environment Series, 2020, , 235-303.	0.2	3
27	Multivariate Metal–Organic Frameworks for the Simultaneous Capture of Organic and Inorganic Contaminants from Water. Journal of the American Chemical Society, 2019, 141, 13601-13609.	6.6	120
28	A [13]rotaxane assembled via a palladium molecular capsule. Nature Communications, 2019, 10, 3720.	5.8	19
29	Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework. Chemistry of Materials, 2019, 31, 5856-5866.	3.2	18
30	Magnetic order in a Cull–DyIII oxamato-based two-dimensional coordination polymer. Comptes Rendus Chimie, 2019, 22, 466-475.	0.2	4
31	Solvent-induced single-crystal-to-single-crystal transformation and tunable magnetic properties of 1D azido-Cu(<scp>ii</scp>) chains with a carboxylate bridge. Dalton Transactions, 2019, 48, 11268-11277.	1.6	13
32	Metal–Organic Frameworks as Playgrounds for Reticulate Single-Molecule Magnets. Inorganic Chemistry, 2019, 58, 14498-14506.	1.9	23
33	Synthesis of a chiral rod-like metal–organic framework from a preformed amino acid-based hexanuclear wheel. Journal of Coordination Chemistry, 2019, 72, 1204-1221.	0.8	2
34	A Metalloligand Approach for the Self-Assembly of a Magnetic Two-Dimensional Grid-of-Grids. Crystal Growth and Design, 2019, 19, 3905-3912.	1.4	9
35	Self-Assembly of Catalytically Active Supramolecular Coordination Compounds within Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10350-10360.	6.6	50
36	Formation of an interlocked double-chain from an organic–inorganic [2]rotaxane. Chemical Communications, 2019, 55, 2960-2963.	2.2	6

#	Article	IF	CITATIONS
37	Modulation of the magnetic anisotropy of octahedral cobalt(<scp>ii</scp>) single-ion magnets by fine-tuning the axial coordination microenvironment. Inorganic Chemistry Frontiers, 2019, 6, 848-856.	3.0	50
38	Capping Nâ€Donor Ligands Modulate the Magnetic Dynamics of Dy ^{III} βâ€Diketonate Singleâ€Ion Magnets with <i>D</i> _{4<i>d</i>} Symmetry. Chemistry - A European Journal, 2019, 25, 3884-3892.	1.7	32
39	Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks: towards mimicking molecular recognition processes. Materials Horizons, 2018, 5, 683-690.	6.4	64
40	Synthesis of Densely Packaged, Ultrasmall Pt ⁰ ₂ Clusters within a Thioetherâ€Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature. Angewandte Chemie, 2018, 130, 6294-6299.	1.6	22
41	Synthesis of Densely Packaged, Ultrasmall Pt ⁰ ₂ Clusters within a Thioetherâ€Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature. Angewandte Chemie - International Edition, 2018, 57, 6186-6191.	7.2	115
42	Growth of thin films of single-chain magnets on functionalized silicon surfaces. Journal of Coordination Chemistry, 2018, 71, 725-736.	0.8	2
43	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	5.2	369
44	Dicopper(II) metallacyclophanes with photoswitchable oligoacene spacers: a joint experimental and computational study on molecular magnetic photoswitches. Journal of Coordination Chemistry, 2018, 71, 675-692.	0.8	3
45	Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story. European Journal of Inorganic Chemistry, 2018, 2018, 228-247.	1.0	44
46	Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline Amino-Acid-Derived Metal-Organic Framework. Chemistry - A European Journal, 2018, 24, 17615-17615.	1.7	1
47	Concise Chemistry Modulation of the SMM Behavior within a Family of Mononuclear Dy(III) Complexes. Inorganic Chemistry, 2018, 57, 14843-14851.	1.9	48
48	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Lowâ€Temperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie - International Edition, 2018, 57, 17094-17099.	7.2	54
49	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Lowâ€Temperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie, 2018, 130, 17340-17345.	1.6	4
50	Stabilized Ru[(H ₂ 0) ₆] ³⁺ in Confined Spaces (MOFs and Zeolites) Catalyzes the Imination of Primary Alcohols under Atmospheric Conditions with Wide Scope. ACS Catalysis, 2018, 8, 10401-10406.	5.5	31
51	Toward Engineering Chiral Rodlike Metal–Organic Frameworks with Rare Topologies. Inorganic Chemistry, 2018, 57, 12869-12875.	1.9	13
52	Lanthanide Discrimination with Hydroxyl-Decorated Flexible Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13895-13900.	1.9	24
53	Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society, 2018, 140, 8827-8832.	6.6	74
54	Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline Aminoâ€Acidâ€Derived Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 17712-17718.	1.7	41

#	Article	IF	CITATIONS
55	A post-synthetic approach triggers selective and reversible sulphur dioxide adsorption on a metal–organic framework. Chemical Communications, 2018, 54, 9063-9066.	2.2	22
56	Molecular magnetism, quo vadis? A historical perspective from a coordination chemist viewpointâ~†. Coordination Chemistry Reviews, 2017, 339, 17-103.	9.5	279
57	Use of Supramolecular Assemblies as Lithographic Resists. Angewandte Chemie - International Edition, 2017, 56, 6749-6752.	7.2	16
58	Use of Supramolecular Assemblies as Lithographic Resists. Angewandte Chemie, 2017, 129, 6853-6856.	1.6	7
59	Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs. Journal of Materials Chemistry A, 2017, 5, 11032-11039.	5.2	36
60	Rational Synthesis of Chiral Metal–Organic Frameworks from Preformed Rodlike Secondary Building Units. Inorganic Chemistry, 2017, 56, 6551-6557.	1.9	27
61	The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 2017, 16, 760-766.	13.3	230
62	Fine-tuning of the confined space in microporous metal–organic frameworks for efficient mercury removal. Journal of Materials Chemistry A, 2017, 5, 20120-20125.	5.2	56
63	Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8098-8101.	6.6	81
64	Cr7Ni Wheels: Supramolecular Tectons for the Physical Implementation of Quantum Information Processing. Magnetochemistry, 2016, 2, 36.	1.0	9
65	Solidâ€State Molecular Nanomagnet Inclusion into a Magnetic Metal–Organic Framework: Interplay of the Magnetic Properties. Chemistry - A European Journal, 2016, 22, 539-545.	1.7	61
66	A modular design of molecular qubits to implement universal quantum gates. Nature Communications, 2016, 7, 11377.	5.8	196
67	Spin-crossover complex encapsulation within a magnetic metal–organic framework. Chemical Communications, 2016, 52, 7360-7363.	2.2	39
68	Structural Studies on a New Family of Chiral BioMOFs. Crystal Growth and Design, 2016, 16, 5571-5578.	1.4	21
69	Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a BioMOF. Angewandte Chemie, 2016, 128, 11333-11338.	1.6	40
70	Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a BioMOF. Angewandte Chemie - International Edition, 2016, 55, 11167-11172.	7.2	158
71	Switchable Interaction in Molecular Double Qubits. CheM, 2016, 1, 727-752.	5.8	60
72	Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 7864-7867.	6.6	196

#	Article	IF	CITATIONS
73	Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral <i>bio</i> MOF. Chemistry of Materials, 2016, 28, 4608-4615.	3.2	105
74	Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits. Nature Communications, 2016, 7, 10240.	5.8	91
75	Synthesis and reactions of N-heterocycle functionalised variants of heterometallic {Cr ₇ Ni} rings. Dalton Transactions, 2016, 45, 1638-1647.	1.6	8
76	Controlled Synthesis of Nanoscopic Metal Cages. Journal of the American Chemical Society, 2015, 137, 7644-7647.	6.6	41
77	Metallosupramolecular approach toward multifunctional magnetic devices for molecular spintronics. Coordination Chemistry Reviews, 2015, 303, 110-138.	9.5	64
78	Halide copper(II) complexes of aromatic N-donor containing ligands: Structural, magnetic and reactivity studies. Journal of Structural Chemistry, 2015, 56, 1563-1571.	0.3	7
79	Dicopper(II) Metallacyclophanes as Multifunctional Magnetic Devices: A Joint Experimental and Computational Study. Accounts of Chemical Research, 2015, 48, 510-520.	7.6	58
80	Multielectron oxidation in a ferromagnetically coupled dinickel(<scp>ii</scp>) triple mesocate. Chemical Communications, 2015, 51, 13381-13384.	2.2	32
81	"3 + 1 = 6 + 2―in Cu(ii) coordination chemistry of 1H-pyrazole aza cryptands. Dalton Transactions, 2015, 44, 3378-3383.	1.6	5
82	A hybrid organic–inorganic molecular daisy chain. Chemical Communications, 2015, 51, 11126-11129.	2.2	18
83	Postsynthetic Improvement of the Physical Properties in a Metal–Organic Framework through a Single Crystal to Single Crystal Transmetallation. Angewandte Chemie - International Edition, 2015, 54, 6521-6525.	7.2	98
84	Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties. Inorganic Chemistry, 2015, 54, 10834-10840.	1.9	20
85	Double Interpenetration in a Chiral Three-Dimensional Magnet with a (10,3)-a Structure. Inorganic Chemistry, 2015, 54, 8890-8892.	1.9	15
86	Coordinating and hydrogen bonding ability of a bifunctional 2D paddle-wheel copper(II) coordination polymer. Polyhedron, 2015, 87, 220-225.	1.0	3
87	Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials. Chemical Communications, 2014, 50, 7569-7585.	2.2	103
88	The acid test: the chemistry of carboxylic acid functionalised {Cr7Ni} rings. Chemical Science, 2014, 5, 235-239.	3.7	26
89	Intermolecular Binding Modes in a Novel [1 + 1] Condensation 1H-Pyrazole Azamacrocycle: A Solution and Solid State Study with Evidence for CO2Fixation. Inorganic Chemistry, 2013, 52, 10795-10803.	1.9	14
90	The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au. Journal of Catalysis, 2013, 307, 295-304.	3.1	86

#	Article	IF	CITATIONS
91	Enantioselective self-assembly of antiferromagnetic hexacopper(ii) wheels with chiral amino acid oxamates. Chemical Communications, 2013, 49, 5942.	2.2	24
92	Copper(ii) assembling with bis(2-pyridylcarbonyl)amidate and N,N′-2,2-phenylenebis(oxamate). Dalton Transactions, 2013, 42, 5778.	1.6	35
93	Self-assembly of a chiral three-dimensional manganese(ii)–copper(ii) coordination polymer with a double helical architecture. CrystEngComm, 2013, 15, 9312.	1.3	17
94	Dicopper(II) Metallacyclophanes with Electroswitchable Polymethylâ€&ubstituted <i>para</i> â€Phenylene Spacers. Chemistry - A European Journal, 2013, 19, 12124-12137.	1.7	25
95	Redox switching of the antiferromagnetic coupling in permethylated dicopper(ii) paracyclophanes. Chemical Communications, 2012, 48, 8401.	2.2	22
96	Ligand effects on the dimensionality of oxamato-bridged mixed-metal open-framework magnets. Chemical Communications, 2012, 48, 3539.	2.2	15
97	Influence of the alkaline earth cations on the topology of M ^{II} /Cu ^{II} mixed-metal–organic frameworks (M = Ca, Sr and Ba). CrystEngComm, 2012, 14, 761-764.	1.3	17
98	Highly Selective Chemical Sensing in a Luminescent Nanoporous Magnet. Advanced Materials, 2012, 24, 5625-5629.	11.1	131
99	Selective Gas and Vapor Sorption and Magnetic Sensing by an Isoreticular Mixed-Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 15301-15304.	6.6	109
100	Solid-State Aggregation of Metallacyclophane-Based Mn ^{II} Cu ^{II} One-Dimensional Ladders. Inorganic Chemistry, 2012, 51, 7019-7021.	1.9	15
101	Copper(II) complexes with 2,5-bis(2-pyridyl)pyrazine and oxalate and croconate: Synthesis, crystal structure and magnetic properties. Inorganica Chimica Acta, 2012, 389, 52-59.	1.2	8
102	Reversible Solvatomagnetic Switching in a Spongelike Manganese(II)–Copper(II) 3D Open Framework with a Pillared Square/Octagonal Layer Architecture. Chemistry - A European Journal, 2012, 18, 1608-1617.	1.7	86
103	Photoswitching of the antiferromagnetic coupling in an oxamato-based dicopper(ii) anthracenophane. Chemical Communications, 2011, 47, 11035.	2.2	39
104	Solid-State Dinuclear-to-Trinuclear Conversion in an Oxalato-Bridged Chromium(III)â^'Cobalt(II) Complex as a New Route toward Single-Molecule Magnets. Inorganic Chemistry, 2011, 50, 2073-2075.	1.9	30
105	Spin Control in Oxamato-Based Manganese(II)–Copper(II) Coordination Polymers with Brick-Wall Layer Architectures. Inorganic Chemistry, 2011, 50, 8694-8696.	1.9	33
106	Synthesis, Structural Analysis, and Magnetic Properties of Ethylmalonate-Manganese(II) Complexes. Inorganic Chemistry, 2011, 50, 10765-10776.	1.9	15
107	Slow relaxation of the magnetization in Oximato-bridged heterobimetallic Copper(II)-Manganese(III) chains. Journal of the Brazilian Chemical Society, 2011, 22, 976-986.	0.6	2
108	Chromium(III) complexes with 2-(2′-pyridyl)imidazole: Synthesis, crystal structure and magnetic properties. Inorganica Chimica Acta, 2011, 376, 358-366.	1.2	21

#	Article	IF	CITATIONS
109	Synthesis, Crystal Structures and Magnetic Properties of M ^{II} Cu ^{II} Chains (M=Mn and Co) with Sterically Hindered Alkylâ€Substituted Phenyloxamate Bridging Ligands. Chemistry - A European Journal, 2011, 17, 2176-2188.	1.7	58
110	Rational Enantioselective Design of Chiral Heterobimetallic Singleâ€Chain Magnets: Synthesis, Crystal Structures and Magnetic Properties of Oxamatoâ€Bridged M ^{II} Cu ^{II} Chains (M=Mn, Co). Chemistry - A European Journal, 2011, 17, 12482-12494.	1.7	78
111	Supramolecular coordination chemistry of aromatic polyoxalamide ligands: A metallosupramolecular approach toward functional magnetic materials. Coordination Chemistry Reviews, 2010, 254, 2281-2296.	9.5	178
112	Oligoâ€ <i>m</i> â€phenyleneoxalamide Copper(II) Mesocates as Electroâ€Switchable Ferromagnetic Metal–Organic Wires. Chemistry - A European Journal, 2010, 16, 12838-12851.	1.7	30
113	Topological control of the spin coupling in dinuclear copper(II) complexes with meta- and para-phenylenediamine bridging ligands. Inorganica Chimica Acta, 2010, 363, 1984-1994.	1.2	23
114	Long-distance magnetic coupling in dinuclear copper(II) complexes with oligo-para-phenylenediamine bridging ligands. Inorganica Chimica Acta, 2010, 363, 1666-1678.	1.2	34
115	Tuning the Spin Ground State in Heterononanuclear Nickel(II)â^Copper(II) Cylinders with a Triangular Metallacyclophane Core. Inorganic Chemistry, 2010, 49, 11264-11266.	1.9	5
116	Ferromagnetic coupling and magnetic anisotropy in oxalato-bridged trinuclear chromium(iii)-cobalt(ii) complexes with aromatic diimine ligands. Dalton Transactions, 2010, 39, 2350-2358.	1.6	42