Richard J Neutze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipidic cubic phase serial femtosecond crystallography structure of a photosynthetic reaction centre. Acta Crystallographica Section D: Structural Biology, 2022, 78, 698-708.	2.3	7
2	Ultrafast structural changes within a photosynthetic reaction centre. Nature, 2021, 589, 310-314.	27.8	47
3	Nuclear envelope budding is a response to cellular stress. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
4	Advances and challenges in time-resolved macromolecular crystallography. Science, 2021, 373, .	12.6	79
5	A bimolecular fluorescence complementation flow cytometry screen for membrane protein interactions. Scientific Reports, 2021, 11, 19232.	3.3	4
6	A tool for visualizing protein motions in time-resolved crystallography. Structural Dynamics, 2020, 7, 024701.	2.3	20
7	Coherent diffractive imaging of microtubules using an X-ray laser. Nature Communications, 2019, 10, 2589.	12.8	22
8	Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. Annual Review of Biochemistry, 2019, 88, 59-83.	11.1	47
9	Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments. Acta Crystallographica Section D: Structural Biology, 2019, 75, 937-946.	2.3	10
10	A simple adaptation to a protein crystallography station to facilitate difference X-ray scattering studies. Journal of Applied Crystallography, 2019, 52, 378-386.	4.5	0
11	Transient isomers in the photodissociation of bromoiodomethane. Journal of Chemical Physics, 2018, 148, 134307.	3.0	6
12	Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science, 2018, 361, .	12.6	285
13	Flowâ€eligned, singleâ€shot fiber diffraction using a femtosecond Xâ€ray freeâ€electron laser. Cytoskeleton, 2017, 74, 472-481.	2.0	12
14	Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Scientific Reports, 2017, 7, 4518.	3.3	34
15	From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography. Structure, 2017, 25, 1461-1468.e2.	3.3	21
16	Temperature dependence of protein-water interactions in a gated yeast aquaporin. Scientific Reports, 2017, 7, 4016.	3.3	9
17	Nanosecond pump–probe device for time-resolved serial femtosecond crystallography developed at SACLA. Journal of Synchrotron Radiation, 2017, 24, 1086-1091.	2.4	28
18	Asymmetry in serial femtosecond crystallography data. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, 93-101.	0.1	11

#	Article	IF	CITATIONS
19	A three-dimensional movie of structural changes in bacteriorhodopsin. Science, 2016, 354, 1552-1557.	12.6	350
20	Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 2016, 7, 12314.	12.8	71
21	Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes. Protein Science, 2016, 25, 2196-2208.	7.6	9
22	Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2015, 2, 168-176.	2.2	196
23	Conformational activation of visual rhodopsin in native disc membranes. Science Signaling, 2015, 8, ra26.	3.6	37
24	Snapshots of a protein quake. Science, 2015, 350, 381-381.	12.6	4
25	Membrane protein structural biology using X-ray free electron lasers. Current Opinion in Structural Biology, 2015, 33, 115-125.	5.7	42
26	Bacteriorhodopsin: Would the real structural intermediates please stand up?. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 536-553.	2.4	97
27	Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130318.	4.0	53
28	X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6305-6310.	7.1	124
29	Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 2014, 11, 923-926.	19.0	173
30	Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nature Communications, 2013, 4, 2911.	12.8	74
31	Natively Inhibited <i>Trypanosoma brucei</i> Cathepsin B Structure Determined by Using an X-ray Laser. Science, 2013, 339, 227-230.	12.6	393
32	Subangstrom Resolution X-Ray Structure Details Aquaporin-Water Interactions. Science, 2013, 340, 1346-1349.	12.6	179
33	Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 2012, 20, 2706.	3.4	219
34	Expression screening of membrane proteins with cell-free protein synthesis. Protein Expression and Purification, 2012, 82, 218-225.	1.3	34
35	Lipidic phase membrane protein serial femtosecond crystallography. Nature Methods, 2012, 9, 263-265.	19.0	135
36	Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. Current Opinion in Structural Biology, 2012, 22, 651-659.	5.7	144

#	Article	IF	CITATIONS
37	Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photonics, 2012, 6, 35-40.	31.4	292
38	High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography. Science, 2012, 337, 362-364.	12.6	758
39	Time-Resolved WAXS Reveals Accelerated Conformational Changes in Iodoretinal-Substituted Proteorhodopsin. Biophysical Journal, 2011, 101, 1345-1353.	0.5	60
40	Femtosecond X-ray protein nanocrystallography. Nature, 2011, 470, 73-77.	27.8	1,771
41	Overcoming barriers to membrane protein structure determination. Nature Biotechnology, 2011, 29, 335-340.	17.5	325
42	Glycosylation Increases the Thermostability of Human Aquaporin 10 Protein. Journal of Biological Chemistry, 2011, 286, 31915-31923.	3.4	51
43	Structural insights into eukaryotic aquaporin regulation. FEBS Letters, 2010, 584, 2580-2588.	2.8	137
44	Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, 207-219.	0.3	43
45	Rapid readout detector captures protein time-resolved WAXS. Nature Methods, 2010, 7, 775-776.	19.0	36
46	Proteorhodopsin Phototrophy Promotes Survival of Marine Bacteria during Starvation. PLoS Biology, 2010, 8, e1000358.	5.6	206
47	Refractive-Index-Based Screening of Membrane-Protein-Mediated Transfer across Biological Membranes. Biophysical Journal, 2010, 99, 124-133.	0.5	35
48	Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction. Science, 2010, 328, 630-633.	12.6	103
49	Crystal Structure of a Yeast Aquaporin at 1.15 Ã Reveals a Novel Gating Mechanism. PLoS Biology, 2009, 7, e1000130.	5.6	150
50	Solvent dependent structural perturbations of chemical reaction intermediates visualized by time-resolved x-ray diffraction. Journal of Chemical Physics, 2009, 130, 154502.	3.0	38
51	Membrane protein crystallization from lipidic phases. Current Opinion in Structural Biology, 2009, 19, 372-378.	5.7	73
52	Structural Dynamics of Light-Driven Proton Pumps. Structure, 2009, 17, 1265-1275.	3.3	118
53	Lipidic Sponge Phase Crystal Structure of a Photosynthetic Reaction Center Reveals Lipids on the Protein Surface. Biochemistry, 2009, 48, 9831-9838.	2.5	48
54	Structural and Functional Analysis of SoPIP2;1 Mutants Adds Insight into Plant Aquaporin Gating. Journal of Molecular Biology, 2009, 387, 653-668.	4.2	95

#	Article	IF	CITATIONS
55	Insight into factors directing high production of eukaryotic membrane proteins; production of 13 human AQPs in <i>Pichia pastoris</i> . Molecular Membrane Biology, 2009, 26, 215-227.	2.0	40
56	Affinity tags can reduce merohedral twinning of membrane protein crystals. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 1183-1186.	2.5	4
57	A Proposed Time-Resolved X-Ray Scattering Approach to Track Local and Global Conformational Changes in Membrane Transport Proteins. Structure, 2008, 16, 21-28.	3.3	20
58	A Lipidic-Sponge Phase Screen for Membrane Protein Crystallization. Structure, 2008, 16, 1003-1009.	3.3	60
59	Optimized in vitro and in vivo expression of proteorhodopsin: A seven-transmembrane proton pump. Protein Expression and Purification, 2008, 58, 103-113.	1.3	55
60	Effective high-throughput overproduction of membrane proteins in Escherichia coli. Protein Expression and Purification, 2008, 62, 1-8.	1.3	60
61	High-resolution x-ray structure of human aquaporin 5. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13327-13332.	7.1	194
62	Opening and closing the metabolite gate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19565-19566.	7.1	77
63	pH Dependence of Copper Geometry, Reduction Potential, and Nitrite Affinity in Nitrite Reductase. Journal of Biological Chemistry, 2007, 282, 6347-6355.	3.4	66
64	Exceptional overproduction of a functional human membrane protein. Protein Expression and Purification, 2007, 56, 110-120.	1.3	59
65	Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature, 2007, 445, 210-213.	27.8	349
66	Crystal Structure of AcrB in Complex with a Single Transmembrane Subunit Reveals Another Twist. Structure, 2007, 15, 1663-1673.	3.3	88
67	Spectroscopic Characterization of Bacteriorhodopsin's L-intermediate in 3D Crystals Cooled to 170 K¶. Photochemistry and Photobiology, 2007, 74, 794-804.	2.5	0
68	Enzyme:Substrate Hydrogen Bond Shortening during the Acylation Phase of Serine Protease Catalysis. Biochemistry, 2006, 45, 2114-2121.	2.5	36
69	Lipidic Sponge Phase Crystallization of Membrane Proteins. Journal of Molecular Biology, 2006, 364, 44-53.	4.2	105
70	Structural mechanism of plant aquaporin gating. Nature, 2006, 439, 688-694.	27.8	752
71	Aquaporin gating. Current Opinion in Structural Biology, 2006, 16, 447-456.	5.7	117
72	Picosecond calorimetry: Time-resolved x-ray diffraction studies of liquid CH2Cl2. Journal of Chemical Physics, 2006, 124, 234507.	3.0	26

#	Article	IF	CITATIONS
73	Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center. Nature Structural and Molecular Biology, 2005, 12, 630-631.	8.2	64
74	Structures of the oxidized and reduced forms of nitrite reductase fromRhodobacter sphaeroides2.4.3 at high pH: changes in the interactions of the type 2 copper. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1190-1198.	2.5	28
75	Structural Determination of a Transient Isomer ofCH2I2by Picosecond X-Ray Diffraction. Physical Review Letters, 2005, 94, .	7.8	93
76	Deformation of Helix C in the Low Temperature L-intermediate of Bacteriorhodopsin. Journal of Biological Chemistry, 2004, 279, 2147-2158.	3.4	72
77	Potential impact of an X-ray free electron laser on structural biology. Radiation Physics and Chemistry, 2004, 71, 905-916.	2.8	55
78	Lipidic Cubic Phase Crystal Structure of the Photosynthetic Reaction Centre from Rhodobacter sphaeroides at 2.35Ã Resolution. Journal of Molecular Biology, 2003, 331, 681-692.	4.2	127
79	Structural and mechanistic insight from high resolution structures of archaeal rhodopsins. FEBS Letters, 2003, 555, 51-56.	2.8	18
80	Projecting picosecond lattice dynamics through x-ray topography. Applied Physics Letters, 2002, 80, 3727-3729.	3.3	15
81	X-ray Structure of a Serine Protease Acyl-Enzyme Complex at 0.95-Ã Resolution. Journal of Biological Chemistry, 2002, 277, 21962-21970.	3.4	57
82	Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1565, 144-167.	2.6	204
83	Early Structural Rearrangements in the Photocycle of an Integral Membrane Sensory Receptor. Structure, 2002, 10, 473-482.	3.3	51
84	X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate. Nature Structural Biology, 2001, 8, 689-694.	9.7	96
85	X-ray structure of sensory rhodopsin II at 2.1-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10131-10136.	7.1	280
86	Visualizing Photochemical Dynamics in Solution through Picosecond X-Ray Scattering. Physical Review Letters, 2001, 87, 195508.	7.8	101
87	Spectroscopic Characterization of Bacteriorhodopsin's L-intermediate in 3D Crystals Cooled to 170 K¶. Photochemistry and Photobiology, 2001, 74, 794.	2.5	26
88	Deconvoluting ultrafast structural dynamics: temporal resolution beyond the pulse length of synchrotron radiation. Journal of Synchrotron Radiation, 2000, 7, 22-26.	2.4	7
89	Analyzing protein functions in four dimensions. Nature Structural Biology, 2000, 7, 1006-1012.	9.7	69
90	Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature, 2000, 406, 645-648.	27.8	238

6

#	Article	IF	CITATIONS
91	Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 2000, 406, 752-757.	27.8	1,773
92	Lipidic cubic phase crystallization of bacteriorhodopsin and cryotrapping of intermediates: towards resolving a revolving photocycle. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1460, 119-132.	1.0	35
93	Recent successes in time-resolved protein crystallography. Natural Product Reports, 2000, 17, 527-533.	10.3	5
94	Ultrafast structural studies on biological molecules by x-rays. , 1999, , .		0
95	High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature, 1999, 401, 822-826.	27.8	332
96	Observable frequency shifts via spin-rotation coupling. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 249, 161-166.	2.1	50
97	Sagnac experiment with electrons: Reanalysis of a rotationally induced phase shift for charged particles. Physical Review A, 1998, 58, 557-565.	2.5	14
98	Detecting the effects of linear acceleration on the optical response of matter. Physical Review A, 1998, 58, 82-90.	2.5	18
99	Femtosecond time resolution in x-ray diffraction experiments. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5651-5655.	7.1	28
100	Ring interferometer with angular acceleration. Physical Review A, 1995, 51, 5039-5042.	2.5	8
101	The equivalence principle in the Schwarzschild geometry. American Journal of Physics, 1994, 62, 1037-1040.	0.7	12
102	Relativistic (an)harmonic oscillator. American Journal of Physics, 1994, 62, 531-535.	0.7	30
103	Frequency measurements by uniformly accelerating observers. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 179, 389-390.	2.1	4
104	Quantum implications for frequency measurements in Schwarzschild geometry. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 183, 141-144.	2.1	2