Sarah J Short

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653222/publications.pdf

Version: 2024-02-01

567144 610775 24 1,883 15 24 citations h-index g-index papers 26 26 26 3241 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diffusion Tensor Based White Matter Tract Atlases for Pediatric Populations. Frontiers in Neuroscience, 2022, 16, 806268.	1.4	6
2	The Brain and Early Experience Study: Protocol for a Prospective Observational Study. JMIR Research Protocols, 2022, 11 , e34854.	0.5	5
3	Parent-Child Mindfulness-Based Training: A Feasibility and Acceptability Study. Journal of Evidence-based Integrative Medicine, 2021, 26, 2515690X2110021.	1.4	3
4	Mindfulness-based interventions for children and adolescents across all settings: a scoping review protocol. Systematic Reviews, 2020, 9, 286.	2.5	7
5	White Matter Development from Birth to 6ÂYears of Age: A Longitudinal Study. Cerebral Cortex, 2020, 30, 6152-6168.	1.6	20
6	Individual differences in neonatal white matter are associated with executive function at 3 years of age. Brain Structure and Function, 2019, 224, 3159-3169.	1.2	9
7	Improving Methodological Standards in Behavioral Interventions for Cognitive Enhancement. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2019, 3, 2-29.	0.8	149
8	Verbal and nonverbal predictors of executive function in early childhood. Journal of Cognition and Development, 2018, 19, 182-200.	0.6	16
9	Association of Prenatal Maternal Depression and Anxiety Symptoms With Infant White Matter Microstructure. JAMA Pediatrics, 2018, 172, 973.	3.3	93
10	Common and heritable components of white matter microstructure predict cognitive function at 1 and 2 y. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 148-153.	3.3	47
11	Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology, 2016, 71, 12-18.	1.3	174
12	Network-Level Connectivity Dynamics of Movie Watching in 6-Year-Old Children. Frontiers in Human Neuroscience, 2015, 9, 631.	1.0	45
13	Population variation in neuroendocrine activity is associated with behavioral inhibition and hemispheric brain structure in young rhesus monkeys. Psychoneuroendocrinology, 2014, 47, 56-67.	1.3	8
14	Development of Thalamocortical Connectivity during Infancy and Its Cognitive Correlations. Journal of Neuroscience, 2014, 34, 9067-9075.	1.7	180
15	Associations between white matter microstructure and infants' working memory. Neurolmage, 2013, 64, 156-166.	2.1	90
16	Diffusion Tensor Imaging–Based Characterization of Brain Neurodevelopment in Primates. Cerebral Cortex, 2013, 23, 36-48.	1.6	49
17	Longitudinal Development of Cortical and Subcortical Gray Matter from Birth to 2 Years. Cerebral Cortex, 2012, 22, 2478-2485.	1.6	377
18	Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia. Behavioural Brain Research, 2011, 219, 108-115.	1.2	79

#	Article	IF	CITATIONS
19	Maturational Trajectories of Cortical Brain Development through the Pubertal Transition: Unique Species and Sex Differences in the Monkey Revealed through Structural Magnetic Resonance Imaging. Cerebral Cortex, 2010, 20, 1053-1063.	1.6	92
20	Maternal Influenza Infection During Pregnancy Impacts Postnatal Brain Development in the Rhesus Monkey. Biological Psychiatry, 2010, 67, 965-973.	0.7	161
21	Automatic regional analysis of DTI properties in the developmental macaque brain. Proceedings of SPIE, 2008, , .	0.8	4
22	Automatic brain segmentation in rhesus monkeys. , 2007, 6512, 883.		20
23	Brain mechanisms of expectation associated with insula and amygdala response to aversive taste: Implications for placebo. Brain, Behavior, and Immunity, 2006, 20, 120-132.	2.0	66
24	Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nature Neuroscience, 2006, 9, 435-442.	7.1	182