
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653208/publications.pdf Version: 2024-02-01



CÃ1/ANTER HOCH

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Trunk radial growth, water and carbon relations of mature apple trees on two size-controlling rootstocks during severe summer drought. Tree Physiology, 2022, 42, 289-303.                                                                      | 3.1  | 4         |
| 2  | Negative effects of low root temperatures on water and carbon relations in temperate tree seedlings assessed by dual isotopic labelling. Tree Physiology, 2022, , .                                                                             | 3.1  | 5         |
| 3  | Whole-Tree Response of Non-Structural Carbohydrates, Carbon and Nitrogen Concentrations in Two<br>Temperate Tree Species to 10-Year Nitrogen Fertilization. Forests, 2022, 13, 302.                                                             | 2.1  | 4         |
| 4  | Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature<br>Reviews Earth & Environment, 2022, 3, 294-308.                                                                                             | 29.7 | 163       |
| 5  | Lack of hydraulic recovery as a cause of postâ€drought foliage reduction and canopy decline in<br>European beech. New Phytologist, 2022, 234, 1195-1205.                                                                                        | 7.3  | 40        |
| 6  | Physiological and climate controls on foliar mercury uptake by European tree species. Biogeosciences, 2022, 19, 1335-1353.                                                                                                                      | 3.3  | 18        |
| 7  | Soil nutrient availability alters tree carbon allocation dynamics during drought. Tree Physiology, 2021, 41, 697-707.                                                                                                                           | 3.1  | 28        |
| 8  | Rapid hydraulic collapse as cause of drought-induced mortality in conifers. Proceedings of the<br>National Academy of Sciences of the United States of America, 2021, 118, .                                                                    | 7.1  | 80        |
| 9  | Effect of Asynchronous Light and Temperature Fluctuations on Plant Traits in Indoor Growth Facilities. Agronomy, 2021, 11, 755.                                                                                                                 | 3.0  | 1         |
| 10 | Dynamic <sup>2</sup> H irrigation pulse labelling reveals rapid infiltration and mixing of precipitation in the soil and speciesâ€specific water uptake depths of trees in a temperate forest. Ecohydrology, 2021, 14, e2322.                   | 2.4  | 12        |
| 11 | Climate Change Modulates Multitrophic Interactions Between Maize, A Root Herbivore, and Its<br>Enemies. Journal of Chemical Ecology, 2021, 47, 889-906.                                                                                         | 1.8  | 6         |
| 12 | TreeNet–The Biological Drought and Growth Indicator Network. Frontiers in Forests and Global<br>Change, 2021, 4, .                                                                                                                              | 2.3  | 13        |
| 13 | Soil nutrients and lowered source:sink ratio mitigate effects of mild but not of extreme drought in trees. Environmental and Experimental Botany, 2020, 169, 103905.                                                                            | 4.2  | 28        |
| 14 | Plant respiration: Controlled by photosynthesis or biomass?. Global Change Biology, 2020, 26, 1739-1753.                                                                                                                                        | 9.5  | 66        |
| 15 | The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.                                                | 5.2  | 68        |
| 16 | Reaching Natural Growth: The Significance of Light and Temperature Fluctuations in Plant<br>Performance in Indoor Growth Facilities. Plants, 2020, 9, 1312.                                                                                     | 3.5  | 13        |
| 17 | Reaching Natural Growth: Light Quality Effects on Plant Performance in Indoor Growth Facilities.<br>Plants, 2020, 9, 1273.                                                                                                                      | 3.5  | 8         |
| 18 | Rhizosphere activity in an old-growth forest reacts rapidly to changes in soil moisture and shapes<br>whole-tree carbon allocation. Proceedings of the National Academy of Sciences of the United States<br>of America, 2020, 117, 24885-24892. | 7.1  | 50        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A first assessment of the impact of the extreme 2018 summer drought on Central European forests.<br>Basic and Applied Ecology, 2020, 45, 86-103.                                                                         | 2.7 | 482       |
| 20 | A bottom-up quantification of foliar mercury uptake fluxes across Europe. Biogeosciences, 2020, 17, 6441-6456.                                                                                                           | 3.3 | 24        |
| 21 | No role for xylem embolism or carbohydrate shortage in temperate trees during the severe 2015<br>drought. Journal of Ecology, 2019, 107, 334-349.                                                                        | 4.0 | 46        |
| 22 | Latitude and Weather Influences on Sun Light Quality and the Relationship to Tree Growth. Forests, 2019, 10, 610.                                                                                                        | 2.1 | 26        |
| 23 | High carbon storage in carbonâ€limited trees. New Phytologist, 2019, 222, 171-182.                                                                                                                                       | 7.3 | 54        |
| 24 | Revisiting the relative growth rate hypothesis for gymnosperm and angiosperm species coâ€occurrence.<br>American Journal of Botany, 2019, 106, 101-112.                                                                  | 1.7 | 17        |
| 25 | Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation,<br>increased soil moisture, and increased wood carbon storage. Environmental and Experimental Botany,<br>2018, 148, 117-127. | 4.2 | 33        |
| 26 | Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. New Phytologist, 2018, 218, 107-118.                                                                              | 7.3 | 69        |
| 27 | Linkage of root morphology to anatomy with increasing nitrogen availability in six temperate tree species. Plant and Soil, 2018, 425, 189-200.                                                                           | 3.7 | 39        |
| 28 | Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon<br>allocation in models for trees and forests. Environmental and Experimental Botany, 2018, 152, 7-18.                  | 4.2 | 115       |
| 29 | No carbon "bet hedging―in pine seedlings under prolonged summer drought and elevated<br><scp>CO</scp> <sub>2</sub> . Journal of Ecology, 2018, 106, 31-46.                                                               | 4.0 | 36        |
| 30 | Losing half the conductive area hardly impacts the water status of mature trees. Scientific Reports, 2018, 8, 15006.                                                                                                     | 3.3 | 39        |
| 31 | Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiology, 2018, 38, 1764-1778.                                                                          | 3.1 | 171       |
| 32 | Homeostatic levels of nonstructural carbohydrates after 13Âyr of drought and irrigation in <i>Pinus<br/>sylvestris</i> . New Phytologist, 2018, 219, 1314-1324.                                                          | 7.3 | 65        |
| 33 | Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant, Cell and Environment, 2017, 40, 1153-1162.                                                      | 5.7 | 26        |
| 34 | Night and day – Circadian regulation of night-time dark respiration and light-enhanced dark<br>respiration in plant leaves and canopies. Environmental and Experimental Botany, 2017, 137, 14-25.                        | 4.2 | 23        |
| 35 | Growth reduction after defoliation is independent of <scp>CO</scp> <sub>2</sub> supply in deciduous and evergreen young oaks. New Phytologist, 2017, 214, 1479-1490.                                                     | 7.3 | 29        |
| 36 | Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe<br>carbon stress. Journal of Experimental Botany, 2017, 68, 5221-5232.                                                 | 4.8 | 49        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location. Tree Physiology, 2017, 37, 1001-1010.                                                        | 3.1 | 60        |
| 38 | Convergence of leafâ€out towards minimum risk of freezing damage in temperate trees. Functional<br>Ecology, 2016, 30, 1480-1490.                                                                                       | 3.6 | 59        |
| 39 | Where, why and how? Explaining the lowâ€ŧemperature range limits of temperate tree species. Journal of Ecology, 2016, 104, 1076-1088.                                                                                  | 4.0 | 171       |
| 40 | Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech. Tree Physiology, 2016, 36, 490-501.                                                  | 3.1 | 31        |
| 41 | Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiology, 2016, 36, 847-855.                                                        | 3.1 | 76        |
| 42 | Dynamics of nonâ€ <b>s</b> tructural carbohydrates in terrestrial plants: a global synthesis. Ecological<br>Monographs, 2016, 86, 495-516.                                                                             | 5.4 | 458       |
| 43 | Evolutionary potential in the Alpine: trait heritabilities and performance variation of the dwarf willow <i>Salix herbacea</i> from different elevations and microhabitats. Ecology and Evolution, 2016, 6, 3940-3952. | 1.9 | 98        |
| 44 | The snow and the willows: earlier spring snowmelt reduces performance in the lowâ€lying alpine shrub<br><i>Salix herbacea</i> . Journal of Ecology, 2016, 104, 1041-1050.                                              | 4.0 | 110       |
| 45 | The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany, 2016, 103, 603-612.                                 | 1.7 | 100       |
| 46 | Nearâ€infrared spectroscopy ( <scp>NIRS</scp> ) predicts nonâ€structural carbohydrate concentrations in different tissue types of a broad range of tree species. Methods in Ecology and Evolution, 2015, 6, 1018-1025. | 5.2 | 63        |
| 47 | Bud freezing resistance in alpine shrubs across snow depth gradients. Environmental and Experimental Botany, 2015, 118, 95-101.                                                                                        | 4.2 | 20        |
| 48 | With a little help from my friends: Community facilitation increases performance in the dwarf shrub Salix herbacea. Basic and Applied Ecology, 2015, 16, 202-209.                                                      | 2.7 | 59        |
| 49 | Defoliation reduces growth but not carbon reserves in Mediterranean Pinus pinaster trees. Trees -<br>Structure and Function, 2015, 29, 1187-1196.                                                                      | 1.9 | 44        |
| 50 | Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 2015, 35, tpv073.                                                                                                           | 3.1 | 163       |
| 51 | Tree carbon allocation dynamics determined using a carbon mass balance approach. New Phytologist, 2015, 205, 147-159.                                                                                                  | 7.3 | 82        |
| 52 | Carbon Reserves as Indicators for Carbon Limitation in Trees. Progress in Botany Fortschritte Der<br>Botanik, 2015, , 321-346.                                                                                         | 0.3 | 70        |
| 53 | The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a<br>Multi-Site Transplant Experiment. PLoS ONE, 2015, 10, e0122395.                                                    | 2.5 | 101       |
| 54 | Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest.<br>Tree Physiology, 2014, 34, 981-992.                                                                             | 3.1 | 136       |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Does carbon storage limit tree growth?. New Phytologist, 2014, 201, 1096-1100.                                                                                                                                                             | 7.3 | 212       |
| 56 | Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit.<br>Journal of Ecology, 2014, 102, 1537-1548.                                                                                         | 4.0 | 25        |
| 57 | Genetic vs. nonâ€genetic responses of leaf morphology and growth to elevation in temperate tree species. Functional Ecology, 2014, 28, 243-252.                                                                                            | 3.6 | 39        |
| 58 | Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia, 2014, 175, 219-229.                                                                                                                             | 2.0 | 139       |
| 59 | Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiology, 2014, 34, 302-313.                                                                                                 | 3.1 | 59        |
| 60 | Spring patterns of freezing resistance and photosynthesis of two leaf phenotypes of Hedera helix.<br>Basic and Applied Ecology, 2014, 15, 543-550.                                                                                         | 2.7 | 10        |
| 61 | Earlier leafâ€out rather than difference in freezing resistance puts juvenile trees at greater risk of<br>damage than adult trees. Journal of Ecology, 2014, 102, 981-988.                                                                 | 4.0 | 83        |
| 62 | Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity, 2014, 113, 233-239.                                                                 | 2.6 | 101       |
| 63 | Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia, 2013, 171, 653-662.                                                                                                                     | 2.0 | 93        |
| 64 | Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species.<br>Oecologia, 2013, 171, 663-678.                                                                                                         | 2.0 | 122       |
| 65 | European deciduous trees exhibit similar safety margins against damage by spring freeze events along<br>elevational gradients. New Phytologist, 2013, 200, 1166-1175.                                                                      | 7.3 | 144       |
| 66 | Reciprocal root-shoot cooling and soil fertilization effects on the seasonal growth of two treeline conifer species. Plant Ecology and Diversity, 2013, 6, 21-30.                                                                          | 2.4 | 33        |
| 67 | Tracing fresh assimilates through <i>Larix decidua</i> exposed to elevated<br><scp>CO</scp> <sub>2</sub> and soil warming at the alpine treeline using compoundâ€specific stable<br>isotope analysis. New Phytologist, 2013, 197, 838-849. | 7.3 | 55        |
| 68 | Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany, 2013, 112, 623-631.                                                                                   | 2.9 | 55        |
| 69 | Early season temperature controls cambial activity and total tree ring width at the alpine treeline.<br>Plant Ecology and Diversity, 2013, 6, 365-375.                                                                                     | 2.4 | 67        |
| 70 | Unrestricted quality of seeds in European broad-leaved tree species growing at the cold boundary of their distribution. Annals of Botany, 2012, 109, 473-480.                                                                              | 2.9 | 17        |
| 71 | Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytologist, 2012, 195, 794-802.                                                                                           | 7.3 | 58        |
| 72 | Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps.<br>Journal of Biogeography, 2012, 39, 1439-1449.                                                                                    | 3.0 | 67        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Global patterns of mobile carbon stores in trees at the highâ€elevation tree line. Global Ecology and<br>Biogeography, 2012, 21, 861-871.                                     | 5.8 | 175       |
| 74 | Carbon Storage in Trees: Does Relative Carbon Supply Decrease with Tree Size?. Tree Physiology, 2011, , 287-306.                                                              | 2.5 | 22        |
| 75 | Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of CO2<br>enrichment. Annals of Botany, 2011, 107, 1405-1411.                     | 2.9 | 33        |
| 76 | Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiology and Biochemistry, 2010, 48, 1-8.                      | 5.8 | 132       |
| 77 | Physiological mechanisms of droughtâ€induced tree mortality are far from being resolved. New<br>Phytologist, 2010, 186, 274-281.                                              | 7.3 | 535       |
| 78 | Hemicellulose concentration and composition in plant cell walls under extreme carbon source-sink<br>imbalances. Physiologia Plantarum, 2010, 139, 241-55.                     | 5.2 | 31        |
| 79 | Short-term dynamics of nonstructural carbohydrates and hemicelluloses in young branches of temperate forest trees during bud break. Tree Physiology, 2009, 29, 901-911.       | 3.1 | 84        |
| 80 | Heightâ€related growth declines in ponderosa pine are not due to carbon limitation. Plant, Cell and<br>Environment, 2009, 32, 22-30.                                          | 5.7 | 155       |
| 81 | Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures.<br>Journal of Ecology, 2009, 97, 57-66.                                  | 4.0 | 94        |
| 82 | A test of the growthâ€limitation theory for alpine tree line formation in evergreen and deciduous taxa<br>of the eastern Himalayas. Functional Ecology, 2008, 22, 213-220.    | 3.6 | 145       |
| 83 | The carbon supply of <i>Picea abies</i> trees at a Swiss montane permafrost site. Plant Ecology and Diversity, 2008, 1, 13-20.                                                | 2.4 | 15        |
| 84 | Cell wall hemicelluloses as mobile carbon stores in nonâ€reproductive plant tissues. Functional<br>Ecology, 2007, 21, 823-834.                                                | 3.6 | 86        |
| 85 | 13C Labelling Reveals Different Contributions of Photoassimilates from Infructescences for Fruiting<br>in Two Temperate Forest Tree Species. Plant Biology, 2006, 8, 606-614. | 3.8 | 27        |
| 86 | End of season carbon supply status of woody species near the treeline in western China. Basic and<br>Applied Ecology, 2006, 7, 370-377.                                       | 2.7 | 75        |
| 87 | A Test of Treeline Theory on a Montane Permafrost Island. Arctic, Antarctic, and Alpine Research, 2006,<br>38, 113-119.                                                       | 1.1 | 88        |
| 88 | Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees.<br>Plant, Cell and Environment, 2005, 28, 651-659.                              | 5.7 | 95        |
| 89 | Growth, demography and carbon relations of Polylepis trees at the world's highest treeline.<br>Functional Ecology, 2005, 19, 941-951.                                         | 3.6 | 161       |
| 90 | The carbon charging of pines at the climatic treeline: a global comparison. Oecologia, 2003, 135, 10-21.                                                                      | 2.0 | 280       |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Non-structural carbon compounds in temperate forest trees. Plant, Cell and Environment, 2003, 26, 1067-1081.                                                                                      | 5.7 | 625       |
| 92 | Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees -<br>Structure and Function, 2002, 16, 331-337.                                                     | 1.9 | 165       |
| 93 | Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the<br>Swiss treeline. Oikos, 2002, 98, 361-374.                                                | 2.7 | 339       |
| 94 | Flexibility of nitrogen metabolism in the tropical C3–crassulacean acid metabolism tree species Clusia<br>minor. Functional Plant Biology, 2002, 29, 741.                                         | 2.1 | 15        |
| 95 | Purification and Characterization of Stachyose Synthase from Lentil (Lens culinaris) Seeds:<br>Galactopinitol and Stachyose Synthesis. Archives of Biochemistry and Biophysics, 1999, 366, 75-81. | 3.0 | 53        |