
Arnaud Caron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corrosion effects on the nanotribology of a Ni62Nb38 metallic glass. Applied Surface Science, 2022, 573, 151628.	6.1	2
2	Unlocking the Hidden Potential of Cosmetics Waste for Building Sustainable Green Pavements in the Future: A Case Study of Discarded Lipsticks. Molecules, 2022, 27, 1697.	3.8	5
3	How Good Are the Performances of Graphene and Boron Nitride Against the Wear of Copper?. Materials, 2021, 14, 1148.	2.9	1
4	Effect of crystallographic orientation on the friction of copper and graphenized copper. Journal of Materials Science, 2020, 55, 16432-16450.	3.7	7
5	Towards the Use of Waste Pig Fat as a Novel Potential Bio-Based Rejuvenator for Recycled Asphalt Pavement. Materials, 2020, 13, 1002.	2.9	26
6	Tailoring nanostructured Ni-Nb metallic glassy thin films by substrate temperature. Acta Materialia, 2020, 194, 13-26.	7.9	28
7	Li2S-Incorporated Separator for Achieving High-Energy-Density Li-S Batteries. Journal of Electrochemical Science and Technology, 2020, 11, 33-40.	2.2	2
8	Effect of Normal Contact Vibration on Nano-Scale Friction. Lubricants, 2019, 7, 99.	2.9	3
9	Intermediate structural state for maximizing the rejuvenation effect in metallic glass via thermo-cycling treatment. Journal of Alloys and Compounds, 2019, 795, 493-500.	5.5	34
10	Effect of cooling rate on the structure and nanotribology of Ag–Cu nano-eutectic alloys. Journal of Materials Science, 2019, 54, 9168-9184.	3.7	11
11	Investigation on the role of interfacial water on the tribology between graphite and metals. RSC Advances, 2019, 9, 7285-7291.	3.6	6
12	Mesoporous Carbonâ€dispersed Carbon Nanotube Film Electrode Incorporated with Sulfur for Long‣ife Li–S Batteries. Bulletin of the Korean Chemical Society, 2019, 40, 412-417.	1.9	2
13	Chemical effects on the sliding friction of Ag and Au(111). Friction, 2018, 6, 84-97.	6.4	17
14	Nanoscopic wear behavior of face centered cubic metals. Acta Materialia, 2018, 147, 203-212.	7.9	21
15	Control of electrical to thermal conductivity ratio for p-type LaxFe3CoSb12 thermoelectrics by using a melt-spinning process. Journal of Alloys and Compounds, 2017, 729, 1209-1214.	5.5	9
16	Importance of surface oxide for the tribology of a Zr-based metallic glass. Friction, 2017, 5, 115-122.	6.4	25
17	Quantitative Hardness Measurement by Instrumented AFM-indentation. Journal of Visualized Experiments, 2016, , .	0.3	4
18	Distinction Between Magnesium Diboride and Tetraboride by Kelvin Probe Force Microscopy. Praktische Metallographie/Practical Metallography, 2016, 53, 512-521.	0.3	0

ARNAUD CARON

#	Article	IF	CITATIONS
19	Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation. Beilstein Journal of Nanotechnology, 2015, 6, 1721-1732.	2.8	10
20	Young's modulus, fracture strength, and Poisson's ratio of nanocrystalline diamond films. Journal of Applied Physics, 2014, 116, .	2.5	62
21	Novel W-based metallic glass with high hardness and wear resistance. Intermetallics, 2014, 47, 6-10.	3.9	54
22	Atomic Scale Mechanisms of Friction Reduction and Wear Protection by Graphene. Nano Letters, 2014, 14, 7145-7152.	9.1	210
23	Investigation of transparent magnetic material formed by selective oxidation of a metallic glass. Thin Solid Films, 2013, 531, 471-475.	1.8	13
24	Friction and Internal Friction Measurements by Atomic Force Acoustic Microscopy. Nanoscience and Technology, 2013, , 391-416.	1.5	0
25	Structure vs Chemistry: Friction and Wear of Pt-Based Metallic Surfaces. ACS Applied Materials & Interfaces, 2013, 5, 11341-11347.	8.0	35
26	Structural features and high quasi-static strain rate sensitivity of Au49Cu26.9Ag5.5Pd2.3Si16.3 bulk metallic glass. Applied Physics Letters, 2012, 101, .	3.3	11
27	Mesostructural effects on the mechanical properties of Zr-based bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 555, 57-62.	5.6	6
28	Phase transformations in Zr-based bulk metallic glass cyclically loaded before plastic yielding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 358-362.	5.6	22
29	On the glass transition temperature and the elastic properties in Zr-based bulk metallic glasses. Philosophical Magazine Letters, 2011, 91, 751-756.	1.2	1
30	Structurally enhanced anelasticity in Zr-based bulk metallic glasses. Scripta Materialia, 2011, 64, 946-949.	5.2	5
31	Class-forming ability and thermoplastic formability of a Pd40Ni40Si4P16 glassy alloy. Journal of Materials Science, 2011, 46, 2091-2096.	3.7	33
32	Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass. Nanotechnology, 2011, 22, 095704.	2.6	26
33	Effect of surface oxidation on the nm-scale wear behavior of a metallic glass. Journal of Applied Physics, 2011, 109, .	2.5	33
34	On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass. Applied Physics Letters, 2011, 99, .	3.3	23
35	Influence of minor aluminum concentration changes in zirconium-based bulk metallic glasses on the elastic, anelastic, and plastic properties. Acta Materialia, 2010, 58, 2004-2013.	7.9	31
36	Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomaterialia, 2010, 6, 2816-2825.	8.3	171

ARNAUD CARON

#	Article	IF	CITATIONS
37	Mechanical behaviour and in situ observation of shear bands in ultrafine grained Pd and Pd–Ag alloys. Acta Materialia, 2010, 58, 967-978.	7.9	43
38	On the Contribution of Friction to the Contact Damping in Atomic Force Acoustic Microscopy. Japanese Journal of Applied Physics, 2010, 49, 120204.	1.5	9
39	Observation of local internal friction and plasticity onset in nanocrystalline nickel by atomic force acoustic microscopy. Acta Materialia, 2009, 57, 4353-4363.	7.9	41
40	Interfacial Water an Exceptional Biolubricant. Crystal Growth and Design, 2009, 9, 3852-3854.	3.0	11
41	Glassâ€Forming Ability and Ductility of Zrâ€Based and Alâ€Rich Bulk Metallic Glasses. Advanced Engineering Materials, 2008, 10, 1020-1025.	3.5	4
42	Quantitative Evaluation of Elastic Properties of Nano-Crystalline Nickel Using Atomic Force Acoustic Microscopy. Zeitschrift Fur Physikalische Chemie, 2008, 222, 471-498.	2.8	31
43	Tuning Nanoscopic Water Layers on Hydrophobic and Hydrophilic Surfaces with Laser Light. Langmuir, 2008, 24, 635-636.	3.5	41
44	Near-Field Acoustical Imaging using Lateral Bending Mode of Atomic Force Microscope Cantilevers. Acoustical Imaging, 2007, , 31-41.	0.2	1
45	Imaging using lateral bending modes of atomic force microscope cantilevers. Applied Physics Letters, 2004, 85, 6398-6400.	3.3	30
46	Ultrasonic Modes in Atomic Force Microscopy. Acoustical Imaging, 2004, , 699-706.	0.2	4
47	Experimental Studies of Nanometer-Scaled Single-Asperity Contacts with Metal Surfaces. , 0, , .		0