Alessandro Parodi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653055/publications.pdf

Version: 2024-02-01

31 papers

2,644 citations

393982 19 h-index 30 g-index

31 all docs

31 docs citations

times ranked

31

5052 citing authors

#	Article	IF	Citations
1	Biomimetic approaches for targeting tumor-promoting inflammation. Seminars in Cancer Biology, 2022, 86, 555-567.	4.3	15
2	In Silico, In Vitro, and Clinical Investigations of Cathepsin B and Stefin A mRNA Expression and a Correlation Analysis in Kidney Cancer. Cells, 2022, 11, 1455.	1.8	8
3	Long Non-Coding PROX1-AS1 Expression Correlates with Renal Cell Carcinoma Metastasis and Aggressiveness. Non-coding RNA, 2021, 7, 25.	1.3	4
4	Cathepsin Dâ€"Managing the Delicate Balance. Pharmaceutics, 2021, 13, 837.	2.0	30
5	Nanomedicine for Treating Diabetic Retinopathy Vascular Degeneration. International Journal of Translational Medicine, 2021, 1, 306-322.	0.1	4
6	Biomimetic cellular vectors for enhancing drug delivery to the lungs. Scientific Reports, 2020, 10, 172.	1.6	16
7	Cysteine Cathepsins Inhibition Affects Their Expression and Human Renal Cancer Cell Phenotype. Cancers, 2020, 12, 1310.	1.7	17
8	Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics, 2020, 12, 559.	2.0	23
9	Endosomal Escape of Polymerâ€Coated Silica Nanoparticles in Endothelial Cells. Small, 2020, 16, e1907693.	5.2	12
10	Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants, 2020, 9, 94.	2,2	22
11	Smart Nanotheranostics Responsive to Pathological Stimuli. Frontiers in Bioengineering and Biotechnology, 2020, 8, 503.	2.0	22
12	The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance. International Journal of Molecular Sciences, 2019, 20, 3602.	1.8	80
13	Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics, 2019, 11, 245.	2.0	52
14	Albumin Nanovectors in Cancer Therapy and Imaging. Biomolecules, 2019, 9, 218.	1.8	85
15	Inflammation and Cancer: In Medio Stat Nano. Current Medicinal Chemistry, 2018, 25, 4208-4223.	1.2	22
16	Trends towards Biomimicry in Theranostics. Nanomaterials, 2018, 8, 637.	1.9	14
17	Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials, 2017, 147, 155-168.	5.7	199
18	Ghee Butter as a Therapeutic Delivery System. Journal of Nanoscience and Nanotechnology, 2017, 17, 977-982.	0.9	11

#	Article	IF	CITATIONS
19	<div>Effects of the protein corona on liposome–liposome and liposome–cell interactions</div> . International Journal of Nanomedicine, 2016, Volume 11, 3049-3063.	3.3	67
20	The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine, 2016, 11, 81-100.	1.7	499
21	Cell source determines the immunological impact of biomimetic nanoparticles. Biomaterials, 2016, 82, 168-177.	5.7	50
22	One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials, 2016, 87, 57-68.	5.7	67
23	Case Study: Application of LeukoLike Technology to Camouflage Nanoparticles from the Immune Recognition. Frontiers in Nanobiomedical Research, 2016, , 43-68.	0.1	0
24	Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine, 2015, 10, 1923-1940.	1.7	70
25	Proteomic Profiling of a Biomimetic Drug Delivery Platform. Current Drug Targets, 2015, 16, 1540-1547.	1.0	37
26	Bromelain Surface Modification Increases the Diffusion of Silica Nanoparticles in the Tumor Extracellular Matrix. ACS Nano, 2014, 8, 9874-9883.	7.3	152
27	Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotechnology, 2013, 8, 61-68.	15.6	925
28	Evaluation of Cell Function Upon Nanovector Internalization. Small, 2013, 9, 1696-1702.	5.2	17
29	Interactions of single-wall carbon nanotubes with endothelial cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 277-288.	1.7	72
30	A comparative study of leukaemia inhibitory factor and interleukin- $1\hat{l}\pm$ intracellular content in a human keratinocyte cell line after exposure to cosmetic fragrances and sodium dodecyl sulphate. Toxicology Letters, 2010, 192, 101-107.	0.4	12
31	Comparison of the irritation potentials of Boswellia serrata gum resin and of acetyl- 11 -keto- $\hat{1}^2$ -boswellic acid by in vitro cytotoxicity tests on human skin-derived cell lines. Toxicology Letters, 2008, 177, 144-149.	0.4	40