Gilles Escarguel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653046/publications.pdf

Version: 2024-02-01

93 papers 3,744 citations

32 h-index 56 g-index

96 all docs 96 docs citations

96 times ranked 4011 citing authors

#	Article	IF	Citations
1	Discrimination of conspecifics from heterospecifics in a hybrid zone: Behavioral and chemical cues in ants. Insect Science, 2022, 29, 276-288.	1.5	2
2	When less is more and more is less: the impact of sampling effort on species delineation. Palaeontology, 2022, 65, .	1.0	4
3	The Paris Biota decapod (Arthropoda) fauna and the diversity of Triassic decapods. Journal of Paleontology, 2022, 96, 1235-1263.	0.5	2
4	Palynology from ground zero of the Chicxulub impact, southern Gulf of Mexico. Palynology, 2021, 45, 283-299.	0.7	4
5	EVOSHEEP: the makeup of sheep breeds in the ancient Near East. Antiquity, 2021, 95, .	0.5	4
6	Latest Smithian (Early Triassic) ammonoid assemblages in Utah (western USA basin) and their implications for regional biostratigraphy, biogeography and placement of the Smithian/Spathian boundary. Geobios, 2021, 69, 1-23.	0.7	2
7	Dispersal–niche continuum index: a new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly. Ecography, 2021, 44, 370-379.	2.1	38
8	Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian. Scientific Reports, 2021, 11, 19657.	1.6	12
9	Brachiopod palaeobiogeography in the western Tethys during the Early Jurassic diversity maximum: introduction of a Pontic Province. Lethaia, 2020, 53, 72-90.	0.6	4
10	Cainotheriidae (Mammalia, Artiodactyla) from Dams (Quercy, SW France): phylogenetic relationships and evolution around the Eocene–Oligocene transition (MP19–MP21). Journal of Systematic Palaeontology, 2020, 18, 541-572.	0.6	8
11	Using museum pelt collections to generate pollen prints from high-risk regions: A new palynological forensic strategy for geolocation. Forensic Science International, 2020, 306, 110061.	1.3	5
12	New middle and late Smithian ammonoid faunas from the Utah/Arizona border: New evidence for calibrating Early Triassic transgressive-regressive trends and paleobiogeographical signals in the western USA basin. Global and Planetary Change, 2020, 192, 103251.	1.6	5
13	Effects of urbanization–climate interactions on range expansion in the invasive European pavement ant. Basic and Applied Ecology, 2020, 44, 46-54.	1.2	16
14	Multiple mating in the context of interspecific hybridization between two Tetramorium ant species. Heredity, 2020, 124, 675-684.	1.2	9
15	Range limits in sympatric cryptic species: a case study in <i>Tetramorium</i> pavement ants (Hymenoptera: Formicidae) across a biogeographical boundary. Insect Conservation and Diversity, 2019, 12, 109-120.	1.4	12
16	Multi-scale impacts of urbanization on species distribution within the genus Tetramorium. Landscape Ecology, 2019, 34, 1937-1948.	1.9	14
17	Statistical confidence intervals for relative abundances and abundance-based ratios: Simple practical solutions for an old overlooked question. Marine Micropaleontology, 2019, 151, 101751.	0.5	25
18	The colonization of the oceans by calcifying pelagic algae. Biogeosciences, 2019, 16, 2501-2510.	1.3	20

#	Article	IF	Citations
19	From hybridization to introgression between two closely related sympatric ant species. Journal of Zoological Systematics and Evolutionary Research, 2019, 57, 778-788.	0.6	17
20	Foreword for the thematic issue "The Paris Biota (Bear Lake County, Idaho, USA): an exceptional window on the Early Triassic marine life― Geobios, 2019, 54, 1-3.	0.7	1
21	Glow in the dark: Use of synchrotron $\hat{l}^{1}\!\!/\!\!4$ XRF trace elemental mapping and multispectral macro-imaging on fossils from the Paris Biota (Bear Lake County, Idaho, USA). Geobios, 2019, 54, 71-79.	0.7	12
22	A new brittle star (Ophiuroidea: Ophiodermatina) from the Early Triassic Paris Biota (Bear Lake) Tj ETQq0 0 0 rgE	BT /Overlo	ck 10 Tf 50 62
23	An onshore bathyal record of tectonics and climate cycles at the onset of the Early-Middle Pleistocene Transition in the eastern Mediterranean. Quaternary Science Reviews, 2019, 209, 23-39.	1.4	13
24	PERâ€SIMPERâ€"A new tool for inferring community assembly processes from taxon occurrences. Global Ecology and Biogeography, 2019, 28, 374-385.	2.7	37
25	Holocene vegetation and climate evolution of Corpus Christi and Trinity bays: Implications on coastal Texas source-to-sink deposition. Geobios, 2018, 51, 123-135.	0.7	8
26	Late Smithian microbial deposits and their lateral marine fossiliferous limestones (Early Triassic,) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50 4
27	Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western) Tj ETQq $1\ 1$	0.784314	· rgBT /Overlo
28	Superstesaster promissor gen. et sp. nov., a new starfish (Echinodermata, Asteroidea) from the Early Triassic of Utah, USA, filling a major gap in the phylogeny of asteroids. Journal of Systematic Palaeontology, 2018, 16, 395-415.	0.6	16
29	MIS 5–1 dinoflagellate cyst analyses and morphometric evaluation of Galeacysta etrusca and Spiniferites cruciformis in southwestern Black Sea. Quaternary International, 2018, 465, 117-129.	0.7	10
30	Early Triassic environmental dynamics and microbial development during the Smithian–Spathian transition (Lower Weber Canyon, Utah, USA). Sedimentary Geology, 2018, 363, 136-151.	1.0	15
31	Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western <scp>USA</scp> basin and its controlling parameters. Palaeontology, 2018, 61, 881-904.	1.0	14
32	Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Science Advances, 2017, 3, e1602159.	4.7	103
33	Morphological disparity and systematic revision of the eocrinoid genus <i>Rhopalocystis</i> (Echinodermata, Blastozoa) from the Lower Ordovician of the central Anti-Atlas (Morocco). Journal of Paleontology, 2017, 91, 685-714.	0.5	11
34	Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin. Global and Planetary Change, 2017, 154, 10-22.	1.6	22
35	Evaluating the accuracy of biodiversity changes through geologic times: from simulation to solution. Paleobiology, 2017, 43, 667-692.	1.3	8
36	Nomenclature for the Nameless: A Proposal for an Integrative Molecular Taxonomy of Cryptic Diversity Exemplified by Planktonic Foraminifera. Systematic Biology, 2016, 65, 925-940.	2.7	60

#	Article	IF	Citations
37	Gauging scale effects and biogeographical signals in similarity distance decay analyses: an Early Jurassic ammonite case study. Palaeontology, 2016, 59, 671-687.	1.0	12
38	The alkyl glycerol ether lipid composition of heterotrophic sulfate reducing bacteria strongly depends on growth substrate. Organic Geochemistry, 2016, 98, 141-154.	0.9	30
39	Paleoecology, biogeography, and evolution of reef ecosystems in the Panthalassa Ocean during the Late Triassic: Insights from reef limestone of the Sambosan Accretionary Complex, Shikoku, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 457, 31-51.	1.0	20
40	Evolution of depositional settings in the Torrey area during the Smithian (Early Triassic, Utah, USA) and their significance for the biotic recovery. Geological Journal, 2016, 51, 600-626.	0.6	15
41	mv <scp>morph</scp> : an <scp>r</scp> package for fitting multivariate evolutionary models to morphometric data. Methods in Ecology and Evolution, 2015, 6, 1311-1319.	2.2	350
42	PFR ² : a curated database of planktonic foraminifera 18S ribosomal <scp>DNA</scp> as a resource for studies of plankton ecology, biogeography and evolution. Molecular Ecology Resources, 2015, 15, 1472-1485.	2.2	55
43	Paleoenvironmental and paleobiological origins of coccolithophorid genus <i>>Watznaueria</i> >emergence during the late Aalenian–early Bajocian. Paleobiology, 2015, 41, 415-435.	1.3	25
44	Biogeography of Triassic Ammonoids. Topics in Geobiology, 2015, , 163-187.	0.6	10
45	Early Triassic Gulliver gastropods: Spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth-Science Reviews, 2015, 146, 31-64.	4.0	37
46	Microbial deposits in the aftermath of the endâ€Permian mass extinction: A diverging case from the Mineral Mountains (Utah, <scp>USA</scp>). Sedimentology, 2015, 62, 753-792.	1.6	49
47	SSU rDNA Divergence in Planktonic Foraminifera: Molecular Taxonomy and Biogeographic Implications. PLoS ONE, 2014, 9, e104641.	1.1	60
48	Smithian shoreline migrations and depositional settings in Timpoweap Canyon (Early Triassic, Utah,) Tj ETQq0 (0 0 rgBT /0	verlock 10 Tf
49	A biometric re-evaluation of recent claims for Early Upper Palaeolithic wolf domestication in Eurasia. Journal of Archaeological Science, 2014, 45, 80-89.	1.2	72
50	Using traditional biometrical data to distinguish West Palearctic wild boar and domestic pigs in the archaeological record: new methods and standards. Journal of Archaeological Science, 2014, 43, 1-8.	1.2	40
51	Missing Data Estimation in Morphometrics: How Much is Too Much?. Systematic Biology, 2014, 63, 203-218.	2.7	37
52	Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss Journal of Palaeontology, 2013, 132, 141-219.	0.7	52
53	Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia, 2013, 46, 19-33.	0.6	12
54	Late Pleistocene (MIS 3–4) climate inferred from micromammal communities and δ ¹⁸ 0 of rodents from Les Pradelles, France. Quaternary Research, 2013, 80, 113-124.	1.0	30

#	Article	IF	CITATIONS
55	The cryptic and the apparent reversed: lack of genetic differentiation within the morphologically diverse plexus of the planktonic foraminifer <i>Globigerinoides sacculifer</i> . Paleobiology, 2013, 39, 21-39.	1.3	85
56	Global scale same-specimen morpho-genetic analysis of Truncorotalia truncatulinoides: A perspective on the morphological species concept in planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 391, 2-12.	1.0	43
57	Ecological modeling of the temperature dependence of cryptic species of planktonic Foraminifera in the Southern Hemisphere. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 391, 13-33.	1.0	63
58	A large new collection of Palaeostylops from the Paleocene of the Flaming Cliffs area (Ulan-Nur) Tj ETQq0 0 0 rgBT (Mammalia, Gliriformes). Geobios, 2012, 45, 311-322.		10 Tf 50 6 11
59	On Mesopithecus habitat: Insights from late Miocene fossil vertebrate localities of Bulgaria. Journal of Human Evolution, 2012, 63, 162-179.	1.3	16
60	The use of MSR (Minimum Sample Richness) for sample assemblage comparisons. Paleobiology, 2011, 37, 696-709.	1.3	44
61	Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience, 2011, 4, 693-697.	5.4	122
62	Biodiversity is not (and never has been) a bed of roses!. Comptes Rendus - Biologies, 2011, 334, 351-359.	0.1	33
63	Gastropod evidence against the Early Triassic Lilliput effect: REPLY. Geology, 2011, 39, e233-e233.	2.0	10
64	Worldwide Genotyping in the Planktonic Foraminifer Globoconella inflata: Implications for Life History and Paleoceanography. PLoS ONE, 2011, 6, e26665.	1.1	46
65	Can Dental Microwear Textures Record Inter-Individual Dietary Variations?. PLoS ONE, 2010, 5, e9542.	1.1	119
66	Astronomically-paced coccolith size variations during the early Pliensbachian (Early Jurassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295, 281-292.	1.0	31
67	Good Genes and Good Luck: Ammonoid Diversity and the End-Permian Mass Extinction. Science, 2009, 325, 1118-1121.	6.0	241
68	Biogeographical affinities of Jurassic and Cretaceous continental vertebrate assemblages from SE Asia. Geological Society Special Publication, 2009, 315, 285-300.	0.8	5
69	Morphological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Marine Micropaleontology, 2009, 71, 148-165.	0.5	108
70	Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes: Paleoceanographic and paleogeographic implications. Journal of Asian Earth Sciences, 2009, 36, 420-433.	1.0	59
71	A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover. Review of Palaeobotany and Palynology, 2008, 148, 13-35.	0.8	59
72	Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution, 2008, 55, 1138-1147.	1.3	258

#	Article	IF	Citations
73	Unearthing deep-time biodiversity changes: The Palaeogene mammalian metacommunity of the Quercy and Limagne area (Massif Central, France). Comptes Rendus - Geoscience, 2008, 340, 602-614.	0.4	27
74	A new family of bats in the Paleogene of Europe: Systematics and implications for the origin of emballonurids and rhinolophoids. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2008, 250, 199-216.	0.2	18
75	Eocene Amphilemuridae of Western Europe - New data, Systematics, Related forms, Phylogeny. Palaeontographica, Abteilung A: Palaozoologie - Stratigraphie, 2008, 283, 35-82.	1.5	7
76	An Ailuravine Rodent from the Lower Eocene Cambay Formation at Vastan, Western India, and Its Palaeobiogeographic Implications. Acta Palaeontologica Polonica, 2008, 53, 1-14.	0.4	50
77	Vegetation dynamics in southern France during the last 30kyBP in the light of marine palynology. Quaternary Science Reviews, 2007, 26, 1037-1054.	1.4	40
78	Oxygen isotope fractionation between crocodilian phosphate and water. Palaeogeography, Palaeoecology, 2007, 243, 412-420.	1.0	58
79	Mosaic of environments recorded by bryozoan faunas from the Middle Miocene of Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 530-556.	1.0	39
80	High-precision determination of 18O/16O ratios of silver phosphate by EA-pyrolysis-IRMS continuous flow technique. Journal of Mass Spectrometry, 2007, 42, 36-41.	0.7	71
81	Small mammal (rodents and lagomorphs) European biogeography from the Late Oligocene to the mid Pliocene. Global Ecology and Biogeography, 2007, 16, 529-544.	2.7	41
82	<i>Proharpoceras</i> Chao: a new ammonoid lineage surviving the endâ€Permian mass extinction. Lethaia, 2007, 40, 175-181.	0.6	18
83	The significance of pollen signal in present-day marine terrigenous sediments: The example of the Gulf of Lions (western Mediterranean Sea). Geobios, 2007, 40, 159-172.	0.7	78
84	The biogeography of Early Triassic ammonoid faunas: Clusters, gradients, and networks. Geobios, 2007, 40, 749-765.	0.7	83
85	Amphilemuridae (Lipotyphla, Mammalia) éocènes d'Europe occidentaleÂ: nouvelles données taxonomiques. Comptes Rendus - Palevol, 2006, 5, 813-820.	0.1	6
86	The use of Holocene bovid fossils to infer palaeoenvironment in Africa. Quaternary Science Reviews, 2006, 25, 763-783.	1.4	11
87	The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239, 374-395.	1.0	207
88	Mathematics and the Lifeway of Mesopithecus. International Journal of Primatology, 2005, 26, 801-823.	0.9	18
89	CONSTRUCTING, BOOTSTRAPPING, AND COMPARING MORPHOMETRIC AND PHYLOGENETIC TREES: A CASE STUDY OF NEW WORLD MONKEYS (PLATYRRHINI, PRIMATES). Journal of Mammalogy, 2005, 86, 773-781.	0.6	22
90	Counting taxonomic richness from discrete biochronozones of unknown duration: a simulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 202, 181-208.	1.0	21

#	Article	IF	CITATIONS
91	Floor-age constraining of a tectonic paroxysm of the Pyrenean orogen. Late Middle Eocene mammal age of a faulted karstic filling of the Quercy phosphorites, south-western France. Geodinamica Acta, 2000, 13, 271-280.	2.2	9
92	A succession of Miocene rodent assemblages from fissure fillings in southern France: palaeoenvironmental interpretation and comparison with Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 145, 215-230.	1.0	29
93	An Early Triassic gladius associated with soft tissue remains from Idaho, USA—a squid-like coleoid cephalopod at the onset of Mesozoic Era. Acta Palaeontologica Polonica, 0, 63, .	0.4	17