Chen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7652902/publications.pdf

Version: 2024-02-01

29	1,445	21 h-index	28
papers	citations		g-index
31	31	31	1741 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Enabling Applications of Covalent Adaptable Networks. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 175-198.	3.3	134
2	Two-stage holographic photopolymers with high dynamic range. , 2019, , .		0
3	Liposomes formed from photo-cleavable phospholipids: <i>iin situ</i> formation and photo-induced enhancement in permeability. RSC Advances, 2018, 8, 14669-14675.	1.7	14
4	High Dynamic Range (Δ <i>n</i>) Two-Stage Photopolymers via Enhanced Solubility of a High Refractive Index Acrylate Writing Monomer. ACS Applied Materials & Interfaces, 2018, 10, 1217-1224.	4.0	39
5	Dynamic and Responsive DNA-like Polymers. Journal of the American Chemical Society, 2018, 140, 13594-13598.	6.6	45
6	Productive Exchange of Thiols and Thioesters to Form Dynamic Polythioester-Based Polymers. ACS Macro Letters, 2018, 7, 1312-1316.	2.3	40
7	Production of dynamic lipid bilayers using the reversible thiol–thioester exchange reaction. Chemical Communications, 2018, 54, 8108-8111.	2.2	8
8	Recyclable and repolymerizable thiolâ€"X photopolymers. Materials Horizons, 2018, 5, 1042-1046.	6.4	56
9	Bistable and photoswitchable states of matter. Nature Communications, 2018, 9, 2804.	5.8	111
10	A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polymer Chemistry, 2018, 9, 4523-4534.	1.9	78
11	High dynamic range two-stage photopolymer materials through enhanced solubility high refractive index writing monomers. , $2018,\ldots$		О
12	Photoinduced Tetrazoleâ€Based Functionalization of Offâ€Stoichiometric Clickable Microparticles. Advanced Functional Materials, 2017, 27, 1605317.	7.8	20
13	Light-Stimulated Permanent Shape Reconfiguration in Cross-Linked Polymer Microparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14422-14428.	4.0	26
14	Pristine Polysulfone Networks as a Class of Polysulfide-Derived High-Performance Functional Materials. Chemistry of Materials, 2016, 28, 5102-5109.	3.2	34
15	Radical mediated thiol-ene/yne dispersion polymerizations. Polymer, 2016, 105, 180-186.	1.8	17
16	Visible-Light-Initiated Thiol-Michael Addition Polymerizations with Coumarin-Based Photobase Generators: Another Photoclick Reaction Strategy. ACS Macro Letters, 2016, 5, 229-233.	2.3	58
17	UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O ₂ . Polymer Chemistry, 2016, 7, 592-602.	1.9	28
18	Clickable Nucleic Acids: Sequenceâ€Controlled Periodic Copolymer/Oligomer Synthesis by Orthogonal Thiolâ€X Reactions. Angewandte Chemie - International Edition, 2015, 54, 14462-14467.	7.2	75

#	Article	lF	CITATION
19	Multiple shape memory polymers based on laminates formed from thiol-click chemistry based polymerizations. Soft Matter, 2015, 11, 6852-6858.	1.2	15
20	Thiol-Michael addition miniemulsion polymerizations: functional nanoparticles and reactive latex films. Polymer Chemistry, 2015, 6, 3758-3763.	1.9	29
21	Monodispersity/Narrow Polydispersity Cross-Linked Microparticles Prepared by Step-Growth Thiol–Michael Addition Dispersion Polymerizations. Macromolecules, 2015, 48, 8461-8470.	2.2	42
22	Facile Image Patterning via Sequential Thiol–Michael/Thiol–Yne Click Reactions. Chemistry of Materials, 2014, 26, 6819-6826.	3.2	57
23	Monodisperse functional microspheres from step-growth "click―polymerizations: preparation, functionalization and implementation. Materials Horizons, 2014, 1, 535-539.	6.4	53
24	New directions in the chemistry of shape memory polymers. Polymer, 2014, 55, 5849-5872.	1.8	167
25	Facile and Efficient Synthesis of Dendrimers and One-Pot Preparation of Dendritic–Linear Polymer Conjugates via a Single Chemistry: Utilization of Kinetically Selective Thiol–Michael Addition Reactions. Macromolecules, 2014, 47, 4894-4900.	2.2	37
26	Triple Shape Memory Materials Incorporating Two Distinct Polymer Networks Formed by Selective Thiol–Michael Addition Reactions. Macromolecules, 2014, 47, 4949-4954.	2.2	88
27	High Performance Graded Rainbow Holograms via Two-Stage Sequential Orthogonal Thiol–Click Chemistry. Macromolecules, 2014, 47, 2306-2315.	2.2	81
28	Wormlike Micelle Assisted Rod Coating: A General Method for Facile Fabrication of Large-Area Conductive Nanomaterial Thin Layer onto Flexible Plastics. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2891-2896.	4.0	14
29	Nitrogen-Centered Nucleophile Catalyzed Thiol-Vinylsulfone Addition, Another Thiol-ene "Click― Reaction. ACS Macro Letters, 2012, 1, 811-814.	2.3	70