Chen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7652902/publications.pdf Version: 2024-02-01

		331259	500791
29	1,445	21	28
papers	citations	h-index	g-index
31	31	31	1741
all docs	docs citations	times ranked	citing authors

CHEN WANC

#	Article	IF	CITATIONS
1	New directions in the chemistry of shape memory polymers. Polymer, 2014, 55, 5849-5872.	1.8	167
2	Enabling Applications of Covalent Adaptable Networks. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 175-198.	3.3	134
3	Bistable and photoswitchable states of matter. Nature Communications, 2018, 9, 2804.	5.8	111
4	Triple Shape Memory Materials Incorporating Two Distinct Polymer Networks Formed by Selective Thiol–Michael Addition Reactions. Macromolecules, 2014, 47, 4949-4954.	2.2	88
5	High Performance Graded Rainbow Holograms via Two-Stage Sequential Orthogonal Thiol–Click Chemistry. Macromolecules, 2014, 47, 2306-2315.	2.2	81
6	A user's guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polymer Chemistry, 2018, 9, 4523-4534.	1.9	78
7	Clickable Nucleic Acids: Sequenceâ€Controlled Periodic Copolymer/Oligomer Synthesis by Orthogonal Thiolâ€X Reactions. Angewandte Chemie - International Edition, 2015, 54, 14462-14467.	7.2	75
8	Nitrogen-Centered Nucleophile Catalyzed Thiol-Vinylsulfone Addition, Another Thiol-ene "Click― Reaction. ACS Macro Letters, 2012, 1, 811-814.	2.3	70
9	Visible-Light-Initiated Thiol-Michael Addition Polymerizations with Coumarin-Based Photobase Generators: Another Photoclick Reaction Strategy. ACS Macro Letters, 2016, 5, 229-233.	2.3	58
10	Facile Image Patterning via Sequential Thiol–Michael/Thiol–Yne Click Reactions. Chemistry of Materials, 2014, 26, 6819-6826.	3.2	57
11	Recyclable and repolymerizable thiol–X photopolymers. Materials Horizons, 2018, 5, 1042-1046.	6.4	56
12	Monodisperse functional microspheres from step-growth "click―polymerizations: preparation, functionalization and implementation. Materials Horizons, 2014, 1, 535-539.	6.4	53
13	Dynamic and Responsive DNA-like Polymers. Journal of the American Chemical Society, 2018, 140, 13594-13598.	6.6	45
14	Monodispersity/Narrow Polydispersity Cross-Linked Microparticles Prepared by Step-Growth Thiol–Michael Addition Dispersion Polymerizations. Macromolecules, 2015, 48, 8461-8470.	2.2	42
15	Productive Exchange of Thiols and Thioesters to Form Dynamic Polythioester-Based Polymers. ACS Macro Letters, 2018, 7, 1312-1316.	2.3	40
16	High Dynamic Range (Δ <i>n</i>) Two-Stage Photopolymers via Enhanced Solubility of a High Refractive Index Acrylate Writing Monomer. ACS Applied Materials & Interfaces, 2018, 10, 1217-1224.	4.0	39
17	Facile and Efficient Synthesis of Dendrimers and One-Pot Preparation of Dendritic–Linear Polymer Conjugates via a Single Chemistry: Utilization of Kinetically Selective Thiol–Michael Addition Reactions. Macromolecules, 2014, 47, 4894-4900.	2.2	37
18	Pristine Polysulfone Networks as a Class of Polysulfide-Derived High-Performance Functional Materials. Chemistry of Materials, 2016, 28, 5102-5109.	3.2	34

CHEN WANG

#	Article	IF	CITATIONS
19	Thiol-Michael addition miniemulsion polymerizations: functional nanoparticles and reactive latex films. Polymer Chemistry, 2015, 6, 3758-3763.	1.9	29
20	UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O ₂ . Polymer Chemistry, 2016, 7, 592-602.	1.9	28
21	Light-Stimulated Permanent Shape Reconfiguration in Cross-Linked Polymer Microparticles. ACS Applied Materials & Interfaces, 2017, 9, 14422-14428.	4.0	26
22	Photoinduced Tetrazoleâ€Based Functionalization of Offâ€Stoichiometric Clickable Microparticles. Advanced Functional Materials, 2017, 27, 1605317.	7.8	20
23	Radical mediated thiol-ene/yne dispersion polymerizations. Polymer, 2016, 105, 180-186.	1.8	17
24	Multiple shape memory polymers based on laminates formed from thiol-click chemistry based polymerizations. Soft Matter, 2015, 11, 6852-6858.	1.2	15
25	Wormlike Micelle Assisted Rod Coating: A General Method for Facile Fabrication of Large-Area Conductive Nanomaterial Thin Layer onto Flexible Plastics. ACS Applied Materials & Interfaces, 2012, 4, 2891-2896.	4.0	14
26	Liposomes formed from photo-cleavable phospholipids: <i>in situ</i> formation and photo-induced enhancement in permeability. RSC Advances, 2018, 8, 14669-14675.	1.7	14
27	Production of dynamic lipid bilayers using the reversible thiol–thioester exchange reaction. Chemical Communications, 2018, 54, 8108-8111.	2.2	8
28	High dynamic range two-stage photopolymer materials through enhanced solubility high refractive index writing monomers. , 2018, , .		0
29	Two-stage holographic photopolymers with high dynamic range. , 2019, , .		0