Hiroshi Ashida

List of Publications by Year

 in descending orderSource: https:||exaly.com/author-pdf/7652767/publications.pdf
Version: 2024-02-01

2 Cell death and infection: A double-edged sword for host and pathogen survival. Journal of Cell

Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in

A Bacterial Effector Targets Mad2L2, an APC Inhibitor, to Modulate Host Cell Cycling. Cell, 2007, 130,
19
20

> Reproductive condition, batch fecundity, and spawning fraction of large Pacific bluefin tuna Thunnus orientalis landed at Ishigaki Island, Okinawa, Japan. Environmental Biology of Fishes, 2015, 98, 1173-1183.
1.0

50

Shigella deploy multiple countermeasures against host innate immune responses. Current Opinion in
5.1

Microbiology, 2011, 14, 16-23.
49

21 Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Frontiers in
3.9

45
Cellular and Infection Microbiology, 2015, 5, 100.

Bacterial E3 ligase effectors exploit host ubiquitin systems. Current Opinion in Microbiology, 2017, 35,
5.1

45
16-22.

Manipulation of autophagy by bacteria for their own benefit. Microbiology and Immunology, 2011, 55,
459-471.
1.4

A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspaseâ€8.
EMBO Journal, 2020, 39, e104469.
7.8

37
Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation.
Nature Communications, 2021,12,1067.
$26 \quad$ Manipulation of the host cell death pathway by<i>S<|i><i>higella<|i>. Cellular Microbiology, 2014, 16, 1757-1766.
2.1

32
$27 \quad$ Shigella Infection of Intestinal Epithelium and Circumvention of the Host Innate Defense System.
Current Topics in Microbiology and Immunology, 2009, 337, 231-255.

A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment. Nature
Communications, 2021, 12, 2085.
12.8

31
$0.8 \quad 29$

Evidence of spawning among Pacific bluefin tuna, <i>Thunnus orientalis, in the Kuroshio and
30 Kuroshioấ€"Oyashio transition area. Aquatic Living Resources, 2018, 31, 33.
1.2

29

$$
\begin{aligned}
& \text { <i>Porphyromonas gingivalis</i> triggers NLRP3â€mediated inflammasome activation in macrophages in a } \\
& \text { bacterial gingipainsấ€independent manner. European Journal of Immunology, 2018, 48, 1965-1974. }
\end{aligned}
$$

Shigella infection and host cell death: a double-edged sword for the host and pathogen survival.
Current Opinion in Microbiology, 2021, 59, 1-7.
5.1

20

Spawning frequency and batch fecundity of skipjack tuna Katsuwonus pelamis in the tropical
$0.1 \quad 18$
33 west-central Pacific Ocean. Nippon Suisan Gakkaishi, 2008, 74, 802-808.
<i>Shigella</i> hacks host immune responses by reprogramming the host epigenome. EMBO Journal,
2014, 33, 2598-2600.
7.8

18

Inflammasome Activation Induced by Perfringolysin O of Clostridium perfringens and Its Involvement
in the Progression of Gas Gangrene. Frontiers in Microbiology, 2019, 10, 2406.

37	Reproductive condition, spawning season, batch fecundity and spawning fraction of skipjack tuna Katsuwonus pelamis caught around Amami-Oshima, Kagoshima, Japan. Fisheries Science, 2015, 81, 861-869.	1.6	14
38	Ozone ultrafine bubble water induces the cellular signaling involved in oxidative stress responses in human periodontal ligament fibroblasts. Science and Technology of Advanced Materials, 2019, 20, 590-599.	6.1	14
39	<i>Shigella effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26 S proteasome to dampen cytotoxic T lymphocyte activation. Cellular Microbiology, 2019, 21, e12974.	2.1	12
40	Maturation and spawning activity of skipjack tuna Katsuwonus pelamis in the Western Central Pacific Ocean as determined by ovarian histological observation. Nippon Suisan Gakkaishi, 2007, 73, 437-442.	0.1	11
41	Spatial and temporal differences in the reproductive traits of skipjack tuna Katsuwonus pelamis between the subtropical and temperate western Pacific Ocean. Fisheries Research, 2020, 221, 105352.	1.7	11
42	The distribution and early growth of juvenile Pacific bluefin tuna Thunnus orientalis around Sado Island in the eastern Sea of Japan. Fisheries Science, 2020, 86, 1019-1028.	1.6	11
43	Difference on reproductive trait of skipjack tuna Katsuonus pelamis female between schools (free vs) Tj ETQq1 $\underset{1}{10.784314} \underset{7}{1.0} \mathrm{rgBT} / \mathrm{Ove}$ 100, 935-945.		

44 Observation of spawning activity in female skipjack tuna in the sea around Japan. Nippon Suisan Gakkaishi, 2013, 79, 226-228.
$0.1 \quad 5$

45	Effect of low oxygen concentration on activation of inflammation by Helicobacter pylori. Biochemical and Biophysical Research Communications, 2021, 560, 179-185.	2.1	5
46	Growth variability of juvenile skipjack tuna (Katsuwonus pelamis) in the western and central Pacific Ocean. Environmental Biology of Fishes, 2018, 101, 429-439.	1.0	4
47	Feeding ecology of juvenile Pacific bluefin tuna Thunnus orientalis in the Sea of Japan. Marine and Freshwater Research, 2021, , .	1.3	4
48	Reproductive traits and seasonal variations in the spawning activity of female albacore, Thunnus alalunga, in the subtropical western North Pacific Ocean. Journal of Sea Research, 2020, 160-161, 101902.	1.6	3
49	Reproductive dynamics of Pacific bluefin tuna (Thunnus orientalis) off the Nansei Islands, southern Japan. Fisheries Research, 2022, 249, 106256.	1.7	2

$$
\begin{aligned}
& \text { Cell death and infection: A double-edged sword for host and pathogen survival. Journal of } \\
& \text { Experimental Medicine, 2011, 208, i37-i37. }
\end{aligned}
$$

Evidence of spawning by hermaphroditic skipjack tunaKatsuwonus pelamis. Journal of Fish Biology,
2018, 93, 1233-1237.

