Hiroshi Ashida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7652767/publications.pdf Version: 2024-02-01

Ηιροςμί Δεμίρλ

#	Article	IF	CITATIONS
1	Differential Regulation of Caspase-1 Activation, Pyroptosis, and Autophagy via Ipaf and ASC in Shigella-Infected Macrophages. PLoS Pathogens, 2007, 3, e111.	4.7	469
2	Cell death and infection: A double-edged sword for host and pathogen survival. Journal of Cell Biology, 2011, 195, 931-942.	5.2	297
3	Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nature Microbiology, 2019, 4, 492-503.	13.3	270
4	Bacteria and host interactions in the gut epithelial barrier. Nature Chemical Biology, 2012, 8, 36-45.	8.0	267
5	A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nature Cell Biology, 2010, 12, 66-73.	10.3	225
6	Bacterial Interactions with the Host Epithelium. Cell Host and Microbe, 2010, 8, 20-35.	11.0	187
7	The Shigella OspC3 Effector Inhibits Caspase-4, Antagonizes Inflammatory Cell Death, and Promotes Epithelial Infection. Cell Host and Microbe, 2013, 13, 570-583.	11.0	168
8	BabA-mediated Adherence Is a Potentiator of the Helicobacter pylori Type IV Secretion System Activity. Journal of Biological Chemistry, 2011, 286, 25256-25264.	3.4	156
9	The Shigella flexneri effector Ospl deamidates UBC13 to dampen the inflammatory response. Nature, 2012, 483, 623-626.	27.8	153
10	A Bacterial Effector Targets Mad2L2, an APC Inhibitor, to Modulate Host Cell Cycling. Cell, 2007, 130, 611-623.	28.9	141
11	A Tecpr1-Dependent Selective Autophagy Pathway Targets Bacterial Pathogens. Cell Host and Microbe, 2011, 9, 376-389.	11.0	141
12	The versatility of Shigella effectors. Nature Reviews Microbiology, 2008, 6, 11-16.	28.6	138
13	Exploitation of the host ubiquitin system by human bacterial pathogens. Nature Reviews Microbiology, 2014, 12, 399-413.	28.6	113
14	Shigella Manipulates Host Immune Responses by Delivering Effector Proteins with Specific Roles. Frontiers in Immunology, 2015, 6, 219.	4.8	102
15	<i>Shigella</i> IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4254-63.	7.1	87
16	Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Molecular Microbiology, 2007, 63, 680-93.	2.5	82
17	Shigella are versatile mucosal pathogens that circumvent the host innate immune system. Current Opinion in Immunology, 2011, 23, 448-455.	5.5	80
18	Shigella IpaH0722 E3 Ubiquitin Ligase Effector Targets TRAF2 to Inhibit PKC–NF-κB Activity in Invaded Epithelial Cells. PLoS Pathogens, 2013, 9, e1003409.	4.7	58

Hiroshi Ashida

#	Article	IF	CITATIONS
19	Reproductive condition, batch fecundity, and spawning fraction of large Pacific bluefin tuna Thunnus orientalis landed at Ishigaki Island, Okinawa, Japan. Environmental Biology of Fishes, 2015, 98, 1173-1183.	1.0	50
20	Shigella deploy multiple countermeasures against host innate immune responses. Current Opinion in Microbiology, 2011, 14, 16-23.	5.1	49
21	Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Frontiers in Cellular and Infection Microbiology, 2015, 5, 100.	3.9	45
22	Bacterial E3 ligase effectors exploit host ubiquitin systems. Current Opinion in Microbiology, 2017, 35, 16-22.	5.1	45
23	Manipulation of autophagy by bacteria for their own benefit. Microbiology and Immunology, 2011, 55, 459-471.	1.4	39
24	A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase $\hat{a} \in 8$. EMBO Journal, 2020, 39, e104469.	7.8	37
25	Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nature Communications, 2021, 12, 1067.	12.8	35
26	Manipulation of the host cell death pathway by <i>Shigella</i> . Cellular Microbiology, 2014, 16, 1757-1766.	2.1	32
27	Shigella Infection of Intestinal Epithelium and Circumvention of the Host Innate Defense System. Current Topics in Microbiology and Immunology, 2009, 337, 231-255.	1.1	31
28	A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment. Nature Communications, 2021, 12, 2085.	12.8	31
29	High Vaccine Efficacy against Shigellosis of Recombinant NoninvasiveShigellaMutant That ExpressesYersiniaInvasin. Journal of Immunology, 2006, 177, 4709-4717.	0.8	29
30	Evidence of spawning among Pacific bluefin tuna, <i>Thunnus orientalis</i> , in the Kuroshio and Kuroshio–Oyashio transition area. Aquatic Living Resources, 2018, 31, 33.	1.2	29
31	<i>Porphyromonas gingivalis</i> triggers NLRP3â€mediated inflammasome activation in macrophages in a bacterial gingipainsâ€independent manner. European Journal of Immunology, 2018, 48, 1965-1974.	2.9	27
32	Shigella infection and host cell death: a double-edged sword for the host and pathogen survival. Current Opinion in Microbiology, 2021, 59, 1-7.	5.1	20
33	Spawning frequency and batch fecundity of skipjack tuna Katsuwonus pelamis in the tropical west-central Pacific Ocean. Nippon Suisan Gakkaishi, 2008, 74, 802-808.	0.1	18
34	<i>Shigella</i> hacks host immune responses by reprogramming the host epigenome. EMBO Journal, 2014, 33, 2598-2600.	7.8	18
35	Inflammasome Activation Induced by Perfringolysin O of Clostridium perfringens and Its Involvement in the Progression of Gas Gangrene. Frontiers in Microbiology, 2019, 10, 2406.	3.5	18
36	Reproductive biology of male skipjack tuna Katsuwonus pelamis (Linnaeus) in the tropical western and central Pacific Ocean. Fisheries Science, 2010, 76, 785-793.	1.6	16

Hiroshi Ashida

#	Article	IF	CITATIONS
37	Reproductive condition, spawning season, batch fecundity and spawning fraction of skipjack tuna Katsuwonus pelamis caught around Amami-Oshima, Kagoshima, Japan. Fisheries Science, 2015, 81, 861-869.	1.6	14
38	Ozone ultrafine bubble water induces the cellular signaling involved in oxidative stress responses in human periodontal ligament fibroblasts. Science and Technology of Advanced Materials, 2019, 20, 590-599.	6.1	14
39	<i>Shigella</i> effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26S proteasome to dampen cytotoxic T lymphocyte activation. Cellular Microbiology, 2019, 21, e12974.	2.1	12
40	Maturation and spawning activity of skipjack tuna Katsuwonus pelamis in the Western Central Pacific Ocean as determined by ovarian histological observation. Nippon Suisan Gakkaishi, 2007, 73, 437-442.	0.1	11
41	Spatial and temporal differences in the reproductive traits of skipjack tuna Katsuwonus pelamis between the subtropical and temperate western Pacific Ocean. Fisheries Research, 2020, 221, 105352.	1.7	11
42	The distribution and early growth of juvenile Pacific bluefin tuna Thunnus orientalis around Sado Island in the eastern Sea of Japan. Fisheries Science, 2020, 86, 1019-1028.	1.6	11
43	Difference on reproductive trait of skipjack tuna Katsuonus pelamis female between schools (free vs) Tj ETQq1 1 100, 935-945.	0.784314 1.0	rgBT /Overlo 7
44	Observation of spawning activity in female skipjack tuna in the sea around Japan. Nippon Suisan Gakkaishi, 2013, 79, 226-228.	0.1	5
45	Effect of low oxygen concentration on activation of inflammation by Helicobacter pylori. Biochemical and Biophysical Research Communications, 2021, 560, 179-185.	2.1	5
46	Growth variability of juvenile skipjack tuna (Katsuwonus pelamis) in the western and central Pacific Ocean. Environmental Biology of Fishes, 2018, 101, 429-439.	1.0	4
47	Feeding ecology of juvenile Pacific bluefin tuna Thunnus orientalis in the Sea of Japan. Marine and Freshwater Research, 2021, , .	1.3	4
48	Reproductive traits and seasonal variations in the spawning activity of female albacore, Thunnus alalunga, in the subtropical western North Pacific Ocean. Journal of Sea Research, 2020, 160-161, 101902.	1.6	3
49	Reproductive dynamics of Pacific bluefin tuna (Thunnus orientalis) off the Nansei Islands, southern Japan. Fisheries Research, 2022, 249, 106256.	1.7	2
50	A bacterial effector targets the TRAF6-NFήB pathway to modulate the acute inflammatory response to bacterial invasion of epithelial cells. Virulence, 2012, 3, 518-520.	4.4	1
51	Cell death and infection: A double-edged sword for host and pathogen survival. Journal of Experimental Medicine, 2011, 208, i37-i37.	8.5	1
52	Evidence of spawning by hermaphroditic skipjack tunaKatsuwonus pelamis. Journal of Fish Biology, 2018, 93, 1233-1237.	1.6	0