
Jianguo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7652736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chemical Science, 2022, 13, 3129-3139.	3.7	58
2	Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy <i>via</i> Type I PDT and PTT. ACS Nano, 2022, 16, 4162-4174.	7.3	121
3	Modulation of the intramolecular hydrogen bonding and push–pull electron effects toward realizing highly efficient organic room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 13797-13804.	2.7	19
4	Encapsulation of AlEgens within Metal–Organic Framework toward Highâ€Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	9
5	Molecular engineering to achieve AIE-active photosensitizers with NIR emission and rapid ROS generation efficiency. Journal of Materials Chemistry B, 2022, 10, 5272-5278.	2.9	12
6	A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase. Biosensors, 2022, 12, 484.	2.3	5
7	Unusual light-driven amplification through unexpected regioselective photogeneration of five-membered azaheterocyclic AlEgen. Chemical Science, 2021, 12, 709-717.	3.7	23
8	An easily available ratiometric AIE probe for peroxynitrite in vitro and in vivo imaging. Sensors and Actuators B: Chemical, 2021, 329, 129223.	4.0	31
9	An easily available lysosomal-targeted ratiometric fluorescent probe with aggregation induced emission characteristics for hydrogen polysulfide visualization in acute ulcerative colitis. Materials Chemistry Frontiers, 2021, 5, 7638-7644.	3.2	7
10	An easily available ratiometric AIE probe for nitroxyl visualization <i>in vitro</i> and <i>in vivo</i> . Materials Chemistry Frontiers, 2021, 5, 1817-1823.	3.2	15
11	A synergy between the push–pull electronic effect and twisted conformation for high-contrast mechanochromic AlEgens. Materials Horizons, 2021, 8, 630-638.	6.4	42
12	Recent Advances of Pure Organic Room Temperature Phosphorescence Materials for Bioimaging Applications. Chemical Research in Chinese Universities, 2021, 37, 73-82.	1.3	23
13	Bioinspired Hydrogels with Muscle-Like Structure for AlEgen-Guided Selective Self-Healing. CCS Chemistry, 2021, 3, 1146-1156.	4.6	42
14	Synthesis and Properties of Aza-Ovalene with Six Zigzag Edges. Organic Letters, 2021, 23, 8640-8644.	2.4	9
15	Charge Neutralization Strategy to Construct Salt-Tolerant and Cell-Permeable Nanoprobes: Application in Ratiometric Sensing and Imaging of Intracellular pH. Analytical Chemistry, 2021, 93, 15159-15166.	3.2	11
16	Timeâ€Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AlEâ€Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angewandte Chemie - International Edition, 2020, 59, 9470-9477.	7.2	153
17	Timeâ€Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AlEâ€Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angewandte Chemie, 2020, 132, 9557-9564.	1.6	22
18	Mitochondria-targeting NIR fluorescent probe for rapid, highly sensitive and selective visualization of nitroxyl in live cells, tissues and mice. Science China Chemistry, 2020, 63, 282-289.	4.2	16

JIANGUO WANG

#	Article	IF	CITATIONS
19	Discrimination of PdO and Pd2+ in solution and in live cells by novel light-up fluorescent probe with AIE and ESIPT characteristics. Microchemical Journal, 2020, 153, 104503.	2.3	8
20	Lipid Dropletâ€Targetable Fluorescence Guided Photodynamic Therapy of Cancer Cells with an Activatable AlEâ€Active Fluorescent Probe for Hydrogen Peroxide. Advanced Optical Materials, 2020, 8, 2001119.	3.6	46
21	Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. Journal of the American Chemical Society, 2019, 141, 15111-15120.	6.6	155
22	An Easily Available Ratiometric Reaction-Based AIE Probe for Carbon Monoxide Light-up Imaging. Analytical Chemistry, 2019, 91, 9388-9392.	3.2	100
23	Fluorescence Turn-On Visualization of Microscopic Processes for Self-Healing Gels by AIEgens and Anticounterfeiting Application. Chemistry of Materials, 2019, 31, 5683-5690.	3.2	52
24	Highly-efficient photosensitizer based on AlEgen-decorated porphyrin for protein photocleaving. Chinese Chemical Letters, 2019, 30, 1965-1968.	4.8	13
25	Lysosome-Targeting Red-Emitting Aggregation-Induced Emission Probe with Large Stokes Shift for Light-Up <i>in Situ</i> Visualization of β- <i>N</i> -Acetylhexosaminidase. Analytical Chemistry, 2019, 91, 12611-12614.	3.2	42
26	New switch on fluorescent probe with AIE characteristics for selective and reversible detection of mercury ion in aqueous solution. Analytical Biochemistry, 2019, 585, 113403.	1.1	26
27	Spiro-Functionalized Diphenylethenes: Suppression of a Reversible Photocyclization Contributes to the Aggregation-Induced Emission Effect. Journal of the American Chemical Society, 2019, 141, 9803-9807.	6.6	65
28	A smart AlEgen-functionalized surface with reversible modulation of fluorescence and wettability. Materials Horizons, 2019, 6, 2032-2039.	6.4	19
29	Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. Biomaterials, 2019, 208, 72-82.	5.7	82
30	A highly selective and light-up red emissive fluorescent probe for imaging of penicillin G amidase in <i>Bacillus cereus</i> . New Journal of Chemistry, 2019, 43, 6429-6434.	1.4	3
31	Photoresponsive spiro-polymers generated in situ by C–H-activated polyspiroannulation. Nature Communications, 2019, 10, 5483.	5.8	46
32	The influence of intermolecular interactions and molecular packings on mechanochromism and mechanoluminescence – a tetraphenylethylene derivative case. Journal of Materials Chemistry C, 2019, 7, 12709-12716.	2.7	34
33	A fast responsive, highly selective and light-up fluorescent probe for the two-photon imaging of carboxylesterase in living cells. Journal of Materials Chemistry B, 2018, 6, 1595-1599.	2.9	36
34	Triphenylamine cored electron-donors for solution-processed organic solar cells: From tri-armed molecules to tetra-armed molecules. Dyes and Pigments, 2018, 153, 291-299.	2.0	6
35	Selective fluorescent probes for spermine and 1-adamantanamine based on the supramolecular structure formed between AIE-active molecule and cucurbit[n]urils. Sensors and Actuators B: Chemical, 2018, 261, 602-607.	4.0	50
36	Regio- and Stereoselective Polymerization of Diynes with Inorganic Comonomer: A Facile Strategy to Conjugated Poly(<i>p</i> -arylene dihalodiene)s with Processability and Postfunctionalizability. Macromolecules, 2018, 51, 3497-3503.	2.2	3

JIANGUO WANG

#	Article	IF	CITATIONS
37	Malonitrileâ€Functionalized Tetraphenylpyrazine: Aggregationâ€Induced Emission, Ratiometric Detection of Hydrogen Sulfide, and Mechanochromism. Advanced Functional Materials, 2018, 28, 1704689.	7.8	124
38	Selectively light-up hydrogen peroxide in hypoxic cancer cells with a novel fluorescent probe. Chemical Communications, 2018, 54, 13957-13960.	2.2	18
39	Highly Emissive AlEgens with Multiple Functions: Facile Synthesis, Chromism, Specific Lipid Droplet Imaging, Apoptosis Monitoring, and In Vivo Imaging. Chemistry of Materials, 2018, 30, 7892-7901.	3.2	68
40	Side-chain effect of perylene diimide tetramer-based non-fullerene acceptors for improving the performance of organic solar cells. Materials Chemistry Frontiers, 2018, 2, 2104-2108.	3.2	13
41	Corannuleneâ€Incorporated AlE Nanodots with Highly Suppressed Nonradiative Decay for Boosted Cancer Phototheranostics In Vivo. Advanced Materials, 2018, 30, e1801065.	11.1	163
42	Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AlEgens at Ultralow Concentration. Chemistry of Materials, 2018, 30, 4778-4787.	3.2	154
43	A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nature Communications, 2018, 9, 2963.	5.8	339
44	A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. Journal of Materials Chemistry B, 2018, 6, 3894-3903.	2.9	60
45	A new tetraphenylethylene based AIE probe for light-up and discriminatory detection of Cys over Hcy and GSH. Sensors and Actuators B: Chemical, 2017, 252, 712-716.	4.0	57
46	A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chemical Communications, 2017, 53, 4505-4508.	2.2	114
47	A new tetraphenylethylene based AIE sensor with light-up and tunable measuring range for adenosine triphosphate in aqueous solution and in living cells. Analyst, The, 2017, 142, 4388-4392.	1.7	21
48	lonization and Anionâ^'Ï€ ⁺ Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens. Journal of the American Chemical Society, 2017, 139, 16974-16979.	6.6	201
49	Multiscale Humidity Visualization by Environmentally Sensitive Fluorescent Molecular Rotors. Advanced Materials, 2017, 29, 1703900.	11.1	193
50	Humidity Sensors: Multiscale Humidity Visualization by Environmentally Sensitive Fluorescent Molecular Rotors (Adv. Mater. 46/2017). Advanced Materials, 2017, 29, .	11.1	0
51	Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule. Biosensors and Bioelectronics, 2016, 85, 62-67.	5.3	78
52	An AIE based tetraphenylethylene derivative for highly selective and light-up sensing of fluoride ions in aqueous solution and in living cells. RSC Advances, 2016, 6, 59400-59404.	1.7	22
53	New Organic Semiconductors with Imide/Amideâ€Containing Molecular Systems. Advanced Materials, 2014, 26, 6965-6977.	11.1	183
54	Alternating Conjugated Electron Donor–Acceptor Polymers Entailing Pechmann Dye Framework as the Electron Acceptor Moieties for High Performance Organic Semiconductors with Tunable Characteristics. Macromolecules, 2014, 47, 2899-2906.	2.2	54

JIANGUO WANG

#	Article	IF	CITATIONS
55	Conjugated electron donor–acceptor molecules with (E)-[4,4′-biimidazolylidene]-5,5′(1H,1′H)-dione foi new organic semiconductors. Journal of Materials Chemistry C, 2014, 2, 1149-1157.	r 2.7	7
56	A Tetrathiafulvaleneâ€Based Electroactive Covalent Organic Framework. Chemistry - A European Journal, 2014, 20, 14614-14618.	1.7	143
57	New conjugated molecular scaffolds based on [2,2]paracyclophane as electron acceptors for organic photovoltaic cells. Chemical Communications, 2014, 50, 9939-9942.	2.2	40
58	Arylacetylene‧ubstituted Naphthalene Diimides with Dual Functions: Optical Waveguides and nâ€Type Semiconductors. Chemistry - an Asian Journal, 2014, 9, 3207-3214.	1.7	30
59	Alternating Electron Donor–Acceptor Conjugated Polymers Based on Modified Naphthalene Diimide Framework: The Large Enhancement of p-Type Semiconducting Performance upon Solvent Vapor Annealing. Macromolecules, 2013, 46, 5504-5511.	2.2	25
60	New core-expanded naphthalene diimides with different functional groups for air-stable solution-processed organic n-type semiconductors. New Journal of Chemistry, 2013, 37, 1720.	1.4	19
61	New emissive organic molecule based on pyrido[3,4-g]isoquinoline framework: synthesis and fluorescence tuning as well as optical waveguide behavior. Tetrahedron, 2013, 69, 2687-2692.	1.0	18
62	New alternating electron donor–acceptor conjugated polymers entailing (E)-[4,4′-biimidazolylidene]-5,5′(1H,1′H)-dione moieties. Polymer Chemistry, 2013, 4, 5283.	1.9	19
63	Spin Radical Enhanced Magnetocapacitance Effect in Intermolecular Excited States. Journal of Physical Chemistry B, 2013, 117, 14136-14140.	1.2	10
64	Efficient and Mild Iron-Catalyzed Direct Allylation of Benzyl Alcohols and Benzyl Halides with Allyltrimethylsilane. Synthetic Communications, 2010, 40, 2042-2046.	1.1	22
65	A Mild and Efficient Ironâ€Catalyzed Synthesis of Alkenyl Halides <i>via</i> Direct Addition of Benzyl Halides to Arylalkynes. Advanced Synthesis and Catalysis, 2009, 351, 371-374.	2.1	43
66	An efficient and mild iron-mediated synthesis of alkenyl halides via direct C–C bond formation of benzyl alcohols and aryl alkynes. Tetrahedron Letters, 2009, 50, 1240-1242.	0.7	35
67	Donor–acceptor strategy to construct near infrared AlEgens for cell imaging. New Journal of Chemistry, 0, , .	1.4	0