Donglin Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7652103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving cellulases hydrolytic action: An expanded role for electron donors of lytic polysaccharide monooxygenases in cellulose saccharification. Bioresource Technology, 2022, 346, 126662.	4.8	6
2	Double bonus: surfactant-assisted biomass pelleting benefits both the pelleting process and subsequent enzymatic saccharification of the pretreated pellets. Green Chemistry, 2021, 23, 1050-1061.	4.6	18
3	Efficient deconstruction of Chinese silvergrass by FeCl3-catalyzed Î ³ -valerolactone/water system under mild reaction condition. Industrial Crops and Products, 2021, 165, 113405.	2.5	5
4	Improving cellulase recycling efficiency by decreasing the inhibitory effect of unhydrolyzed solid on recycled corn stover saccharification. Renewable Energy, 2020, 145, 215-221.	4.3	15
5	Factors affecting the hydrolytic action of xylanase during pennisetum saccharification: role of lignin. Cellulose, 2020, 27, 3143-3152.	2.4	4
6	Insight into the role of \hat{l}_{\pm} -arabinofuranosidase in biomass hydrolysis: cellulose digestibility and inhibition by xylooligomers. Biotechnology for Biofuels, 2019, 12, 64.	6.2	25
7	Acetone-butanol-ethanol solvents improved enzymatic hydrolysis of pretreated energy grass. Fuel, 2019, 245, 406-412.	3.4	9
8	Factors affecting hydrolytic action of xylanase during pennisetum saccharification: Role of cellulose and its derivatives. Industrial Crops and Products, 2019, 130, 49-56.	2.5	7
9	Influence of size reduction treatments on sugar recovery from Norway spruce for butanol production. Bioresource Technology, 2018, 257, 113-120.	4.8	19
10	Simplified sodium chlorite pretreatment for carbohydrates retention and efficient enzymatic saccharification of silvergrass. Bioresource Technology, 2018, 261, 223-231.	4.8	43
11	Recovering Activities of Inactivated Cellulases by the Use of Mannanase in Spruce Hydrolysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 5265-5272.	3.2	7
12	Improving the Hydrolytic Action of Cellulases by Tween 80: Offsetting the Lost Activity of Cellobiohydrolase Cel7A. ACS Sustainable Chemistry and Engineering, 2017, 5, 11339-11345.	3.2	27
13	Physicochemical characterization and enzymatic digestibility of Chinese pennisetum pretreated with 1-ethyl-3-methylimidazolium acetate at moderate temperatures. Renewable Energy, 2016, 91, 409-416.	4.3	13
14	The access of Trichoderma reesei 6A to cellulose is blocked by isolated hemicelluloses and their derivatives in biomass hydrolysis. RSC Advances, 2016, 6, 73859-73868.	1.7	9
15	Rapid determination of chemical composition and classification of bamboo fractions using visible–near infrared spectroscopy coupled with multivariate data analysis. Biotechnology for Biofuels, 2016, 9, 35.	6.2	33
16	Structural properties and hydrolysabilities of Chinese Pennisetum and Hybrid Pennisetum: Effect of aqueous ammonia pretreatment. Bioresource Technology, 2016, 199, 211-219.	4.8	30
17	Role of hemicellulases in production of fermentable sugars from corn stover. Industrial Crops and Products, 2015, 74, 209-217.	2.5	31
18	Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis. Bioresource Technology, 2015, 175, 529-536.	4.8	66

Donglin Xin

#	Article	IF	CITATIONS
19	Competitive inhibition of cellobiohydrolase I by manno-oligosaccharides. Enzyme and Microbial Technology, 2015, 68, 62-68.	1.6	11
20	Behavior of Cellulose and Xylan in Aqueous Ammonia Pretreatment. Applied Biochemistry and Biotechnology, 2014, 174, 2626-2638.	1.4	8
21	Enhanced Xylanase Performance in the Hydrolysis of Lignocellulosic Materials by Surfactants and Non-catalytic Protein. Applied Biochemistry and Biotechnology, 2014, 172, 2106-2118.	1.4	12
22	Hydrolyzabilities of Different Corn Stover Fractions After Aqueous Ammonia Pretreatment. Applied Biochemistry and Biotechnology, 2014, 172, 1506-1516.	1.4	8
23	Evaluation of aqueous ammonia pretreatment for enzymatic hydrolysis of different fractions of bamboo shoot and mature bamboo. Bioresource Technology, 2014, 173, 198-206.	4.8	26
24	Comparison of the Delignifiability and Hydrolysability of Wheat Straw and Corn Stover in Aqueous Ammonia Pretreatment. BioResources, 2013, 8, .	0.5	11