Minghang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7652037/publications.pdf

Version: 2024-02-01

		1683934	2053595
5	189	5	5
papers	citations	h-index	g-index
6	6	6	349
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Neuroprotective Effect of \hat{l}^2 -Caryophyllene on Cerebral Ischemia-Reperfusion Injury via Regulation of Necroptotic Neuronal Death and Inflammation: In Vivo and in Vitro. Frontiers in Neuroscience, 2017, 11 , 583.	1.4	67
2	βâ€Caryophyllene protects <i>inÂvitro</i> neurovascular unit against oxygenâ€glucose deprivation and reâ€oxygenationâ€induced injury. Journal of Neurochemistry, 2016, 139, 757-768.	2.1	43
3	\hat{l}^2 -Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway. Neurochemical Research, 2017, 42, 1459-1469.	1.6	42
4	All-Trans Retinoic Acid Ameliorates the Early Experimental Cerebral Ischemia–Reperfusion Injury in Rats by Inhibiting the Loss of the Blood–Brain Barrier via the JNK/P38MAPK Signaling Pathway. Neurochemical Research, 2018, 43, 1283-1296.	1.6	22
5	Tamibarotene Improves Hippocampus Injury Induced by Focal Cerebral Ischemia-Reperfusion via Modulating PI3K/Akt Pathway in Rats. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 1832-1840.	0.7	15