
Alessandra Emilia Savarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7651973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunogenicity of personalized dendritic-cell therapy in HIV-1 infected individuals under suppressive antiretroviral treatment: interim analysis from a phase II clinical trial. AIDS Research and Therapy, 2022, 19, 2.	1.7	3
2	The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication <i>In Vitro</i> and Decreases Viral Titers and Disease Progression in Syrian Hamsters. MBio, 2022, 13, e0370521.	4.1	22
3	Glycolysis downregulation is a hallmark of HIVâ€1 latency and sensitizes infected cells to oxidative stress. EMBO Molecular Medicine, 2021, 13, e13901.	6.9	30
4	NHC-gold compounds mediate immune suppression through induction of AHR-TGFÎ ² 1 signalling in vitro and in scurfy mice. Communications Biology, 2020, 3, 10.	4.4	14
5	Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention. European Journal of Drug Metabolism and Pharmacokinetics, 2020, 45, 715-723.	1.6	20
6	A pharmacological perspective of chloroquine in SARS-CoV-2 infection: An old drug for the fight against a new coronavirus?. International Journal of Antimicrobial Agents, 2020, 56, 106078.	2.5	37
7	Alterations of redox and iron metabolism accompany the development of <scp>HIV</scp> latency. EMBO Journal, 2020, 39, e102209.	7.8	37
8	Potential impact of the antirheumatic agent auranofin on proviral HIV-1 DNA in individuals under intensified antiretroviral therapy: Results from a randomised clinical trial. International Journal of Antimicrobial Agents, 2019, 54, 592-600.	2.5	29
9	Crossroads of Cancer and HIV-1: Pathways to a Cure for HIV. Frontiers in Immunology, 2019, 10, 2267.	4.8	12
10	Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses, 2016, 8, 322.	3.3	227
11	Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. Journal of Clinical Investigation, 2016, 126, 1630-1639.	8.2	139
12	Chloroquine and beyond: exploring anti-rheumatic drugs to reduce immune hyperactivation in HIV/AIDS. Retrovirology, 2015, 12, 51.	2.0	48
13	Cellâ€mediated antiâ€Gag immunity in pharmacologically induced functional cure of simian <scp>AIDS</scp> : a â€`bottleneck effect'?. Journal of Medical Primatology, 2015, 44, 227-240.	0.6	4
14	Two-Year Follow-Up of Macaques Developing Intermittent Control of the Human Immunodeficiency Virus Homolog Simian Immunodeficiency Virus SIVmac251 in the Chronic Phase of Infection. Journal of Virology, 2015, 89, 7521-7535.	3.4	20
15	Investigational treatment suspension and enhanced cell-mediated immunity at rebound followed by drug-free remission of simian AIDS. Retrovirology, 2013, 10, 71.	2.0	30
16	A cure for AIDS: a matter of timing?. Retrovirology, 2013, 10, 145.	2.0	11
17	A Highly Intensified ART Regimen Induces Long-Term Viral Suppression and Restriction of the Viral Reservoir in a Simian AIDS Model. PLoS Pathogens, 2012, 8, e1002774.	4.7	70
18	Therapeutic imprinting of the immune system: towards a remission of AIDS in primates?. Retrovirology, 2012. 9. 75.	2.0	3

#	Article	IF	CITATIONS
19	Use of chloroquine in viral diseases. Lancet Infectious Diseases, The, 2011, 11, 653-654.	9.1	29
20	Gold drug auranofin restricts the viral reservoir in the monkey AIDS model and induces containment of viral load following ART suspension. Aids, 2011, 25, 1347-1356.	2.2	74
21	Response of a simian immunodeficiency virus (SIVmac251) to raltegravir: a basis for a new treatment for simian AIDS and an animal model for studying lentiviral persistence during antiretroviral therapy. Retrovirology, 2010, 7, 21.	2.0	36
22	Plasmepsin 4-Deficient Plasmodium berghei Are Virulence Attenuated and Induce Protective Immunity against Experimental Malaria. American Journal of Pathology, 2010, 176, 205-217.	3.8	105
23	Evaluation of the antiretroviral effects of a PEC-conjugated peptide derived from human CD38. Expert Opinion on Therapeutic Targets, 2009, 13, 141-152.	3.4	5
24	Characterization of the serological response to phospholipase D protein of Chlamydophila pneumoniae in patients with acute coronary syndromes. Microbes and Infection, 2009, 11, 367-373.	1.9	5
25	"Shock and kill" effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence. Retrovirology, 2009, 6, 52.	2.0	100
26	Non-Cancer Uses of Histone Deacetylase Inhibitors: Effects on Infectious Diseases and β-Hemoglobinopathies+. Current Topics in Medicinal Chemistry, 2009, 9, 272-291.	2.1	44
27	Response of Feline Immunodeficiency Virus (FIV) to Tipranavir May Provide New Clues for Development of Broad-Based Inhibitors of Retroviral Proteases Acting on Drug-Resistant HIV-1. Current HIV Research, 2008, 6, 306-317.	0.5	12
28	On the use of chloroquine for chikungunya. Lancet Infectious Diseases, The, 2007, 7, 633.	9.1	18
29	Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses. Virology Journal, 2007, 4, 39.	3.4	66
30	In-Silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology, 2007, 4, 21.	2.0	65
31	Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS. Retrovirology, 2007, 4, 79.	2.0	37
32	Risks and benefits of chloroquine use in anticancer strategies. Lancet Oncology, The, 2006, 7, 792-793.	10.7	46
33	New insights into the antiviral effects of chloroquine. Lancet Infectious Diseases, The, 2006, 6, 67-69.	9.1	458
34	A historical sketch of the discovery and development of HIV-1 integrase inhibitors. Expert Opinion on Investigational Drugs, 2006, 15, 1507-1522.	4.1	108
35	Quinoline antimalarials as investigational drugs for HIV-1/AIDS: in vitro effects on HIV-1 replication, HIV-1 response to antiretroviral drugs, and intracellular antiretroviral drug concentrations. Drug Development Research, 2006, 67, 806-817.	2.9	10
36	Potential therapies for coronaviruses. Expert Opinion on Therapeutic Patents, 2006, 16, 1269-1288.	5.0	9

#	Article	IF	CITATIONS
37	Role of Lymphocyte Multidrug Resistance Protein 1 in HIV Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2005, 40, 257-266.	2.1	16
38	Aspartic Proteases ofPlasmodium falciparumas the Target of HIVâ€₁ Protease Inhibitors. Journal of Infectious Diseases, 2005, 191, 1381-1382.	4.0	21
39	Expanding the frontiers of existing antiviral drugs: Possible effects of HIV-1 protease inhibitors against SARS and avian influenza. Journal of Clinical Virology, 2005, 34, 170-178.	3.1	43
40	Candidiasis and HIV-Protease Inhibitors: The Expected and the Unexpected. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2004, 4, 49-59.	0.2	8
41	Anti-HIV Effects of Chloroquine. Journal of Acquired Immune Deficiency Syndromes (1999), 2004, 35, 223-232.	2.1	104
42	Effects of chloroquine on viral infections: an old drug against today's diseases. Lancet Infectious Diseases, The, 2003, 3, 722-727.	9.1	1,022
43	Human CD38 interferes with HIVâ€l fusion through a sequence homologous to the V3 loop of the viral envelope glycoprotein gp120 FASEB Journal, 2003, 17, 1-20.	0.5	28
44	Role of FAS in HIV Infection. Current HIV Research, 2003, 1, 405-417.	0.5	25
45	Anti-HIV effects of chloroquine: mechanisms of inhibition and spectrum of activity. Aids, 2001, 15, 2221-2229.	2.2	105
46	Role of CD38 in HIV-1 infection: an epiphenomenon of T-cell activation or an active player in virus/host interactions?. Aids, 2000, 14, 1079-1089.	2.2	111
47	Expression of prolactin and prolactin receptors by non-Hodgkin's lymphoma cells. International Journal of Cancer, 2000, 85, 124-130.	5.1	26
48	Effects of the human CD38 glycoprotein on the early stages of the HIVâ€1 replication cycle. FASEB Journal, 1999, 13, 2265-2276.	0.5	16
49	Iron metabolism and HIV infection: reciprocal interactions with potentially harmful consequences?. Cell Biochemistry and Function, 1999, 17, 279-287.	2.9	78
50	The Biochemistry of Gene Therapy for AIDS. Clinical Chemistry and Laboratory Medicine, 1998, 36, 205-10.	2.3	3