
Yongzheng Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maximum smoke temperature beneath the ceiling in an enclosed channel with different fire locations. Applied Thermal Engineering, 2017, 111, 30-38.	6.0	87
2	Smoke back-layering flow length in longitudinal ventilated tunnel fires with vertical shaft in the upstream. Applied Thermal Engineering, 2016, 107, 738-746.	6.0	79
3	An experimental investigation on blockage effect of metro train on the smoke back-layering in subway tunnel fires. Applied Thermal Engineering, 2016, 99, 214-223.	6.0	76
4	Maximum gas temperature rise beneath the ceiling in a portals-sealed tunnel fire. Tunnelling and Underground Space Technology, 2018, 80, 10-15.	6.2	64
5	Numerical study on overall smoke control using naturally ventilated shafts during fires in a road tunnel. International Journal of Thermal Sciences, 2019, 140, 491-504.	4.9	61
6	Prediction of smoke back-layering length under different longitudinal ventilations in the subway tunnel with metro train. Tunnelling and Underground Space Technology, 2016, 53, 13-21.	6.2	60
7	Experimental study on the effects of initial sealing time on fire behaviors in channel fires. International Journal of Thermal Sciences, 2018, 125, 273-282.	4.9	57
8	Numerical Investigation of Back-Layering Length and Critical Velocity in Curved Subway Tunnels with Different Turning Radius. Fire Technology, 2017, 53, 1765-1793.	3.0	55
9	Development of Construction Workers Job Stress Scale to Study and the Relationship between Job Stress and Safety Behavior: An Empirical Study in Beijing. International Journal of Environmental Research and Public Health, 2018, 15, 2409.	2.6	48
10	Scale effect of mass loss rates for pool fires in an open environment and in tunnels with wind. Fire Safety Journal, 2019, 105, 41-50.	3.1	37
11	Investigation on the critical shaft height of plug-holing in the natural ventilated tunnel fire. International Journal of Thermal Sciences, 2018, 132, 517-533.	4.9	36
12	Effects of shaft inclination angle on the capacity of smoke exhaust under tunnel fire. Indoor and Built Environment, 2019, 28, 77-87.	2.8	36
13	The maximum gas temperature rises beneath the ceiling in a longitudinal ventilated tunnel fire. Tunnelling and Underground Space Technology, 2021, 108, 103672.	6.2	36
14	The characteristics of under-ventilated pool fires in both model and medium-scale tunnels. Tunnelling and Underground Space Technology, 2019, 87, 27-40.	6.2	29
15	Study on the smoke backâ€layering and critical ventilation in the road tunnel fire at high altitude. Fire and Materials, 2019, 43, 422-429.	2.0	28
16	Smoke Movement in a Sloping Subway Tunnel Under Longitudinal Ventilation with Blockage. Fire Technology, 2017, 53, 1985-2006.	3.0	25
17	Study of tunnel fires during construction using a model scale tunnel. Tunnelling and Underground Space Technology, 2019, 89, 50-67.	6.2	25
18	Characteristics of multiple pool fires in a tunnel with natural ventilation. Journal of Hazardous Materials, 2019, 369, 261-267.	12.4	23

YONGZHENG YAO

#	Article	lF	CITATIONS
19	Experimental study on curved flame characteristics under longitudinal ventilation in a subway tunnel. Applied Thermal Engineering, 2017, 114, 733-743.	6.0	22
20	Theoretical and numerical study on influence of wind on mass loss rates of heptane pool fires at different scales. Fire Safety Journal, 2021, 120, 103048.	3.1	18
21	Experimental study on smoke control using wide shafts in a natural ventilated tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 195, 104015.	3.9	16
22	Numerical study of the characteristics of smoke spread in tunnel fires during construction and method for improvement of smoke control. Case Studies in Thermal Engineering, 2022, 34, 102043.	5.7	14
23	Critical roof opening longitudinal length for complete smoke exhaustion in subway tunnel fires. International Journal of Thermal Sciences, 2018, 133, 55-61.	4.9	12
24	Theoretical and numerical study on critical velocity and driving force for preventing smoke backlayering in a connection roadway fire of coal mines. Tunnelling and Underground Space Technology, 2022, 127, 104566.	6.2	12
25	The burning process and temperature profile of double fires in a tunnel: An experimental study. Tunnelling and Underground Space Technology, 2022, 125, 104500.	6.2	8
26	Experimental study on the diagnosis of operation state of gas extraction pipeline based on pressure gradient method. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-14.	2.3	1