Tamás Tél

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7651825/publications.pdf

Version: 2024-02-01

		218677	233421
64	2,270	26	45
papers	citations	h-index	g-index
60	60	60	1000
68	68	68	1283
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Focusing on transient chaos. Journal of Physics Complexity, 2022, 3, 010201.	2.2	5
2	Characterizing chaos in systems subjected to parameter drift. Physical Review E, 2022, 105, .	2.1	2
3	Ball bouncing down rounded edge stairs: chaotic but tricky. European Journal of Physics, 2021, 42, 035004.	0.6	1
4	Chaos in conservative discrete-time systems subjected to parameter drift. Chaos, 2021, 31, 033142.	2.5	4
5	Chaos physics: what to teach in three lessons?. Physics Education, 2021, 56, 045002.	0.5	2
6	New features of doubly transient chaos: complexity of decay. Journal of Physics Complexity, 2021, 2, 035001.	2.2	6
7	Climate change in mechanical systems: the snapshot view of parallel dynamical evolutions. Nonlinear Dynamics, 2021, 106, 2781-2805.	5.2	5
8	Climate change in a conceptual atmosphere–phytoplankton model. Earth System Dynamics, 2020, 11, 603-615.	7.1	4
9	State-dependent vulnerability of synchronization. Physical Review E, 2019, 100, 052201.	2.1	11
10	Tipping phenomena in typical dynamical systems subjected to parameter drift. Scientific Reports, 2019, 9, 8654.	3.3	45
11	Chaos in Hamiltonian systems subjected to parameter drift. Chaos, 2019, 29, 121105.	2.5	12
12	Leaking in history space: A way to analyze systems subjected to arbitrary driving. Chaos, 2018, 28, 033612.	2.5	12
13	A snapshot attractor view of the advection of inertial particles in the presence of history force. European Physical Journal: Special Topics, 2017, 226, 2069-2078.	2.6	4
14	The theory of parallel climate realizations as a new framework for teleconnection analysis. Scientific Reports, 2017, 7, 44529.	3.3	36
15	Chaotic or just complicated? Ball bouncing down the stairs. European Journal of Physics, 2017, 38, 055003.	0.6	2
16	On the importance of the convergence to climate attractors. European Physical Journal: Special Topics, 2017, 226, 2031-2038.	2.6	22
17	Death and revival of chaos. Physical Review E, 2016, 94, 062221.	2.1	18
18	Quantifying nonergodicity in nonautonomous dissipative dynamical systems: An application to climate change. Physical Review E, 2016, 94, 022214.	2.1	25

#	Article	IF	CITATIONS
19	Probabilistic Concepts in Intermediate-Complexity Climate Models: A Snapshot Attractor Picture. Journal of Climate, 2016, 29, 259-272.	3.2	31
20	History effects in the sedimentation of light aerosols in turbulence: The case of marine snow. Physical Review Fluids, 2016, 1 , .	2.5	18
21	Probabilistic Concepts in a Changing Climate: A Snapshot Attractor Picture*. Journal of Climate, 2015, 28, 3275-3288.	3.2	79
22	The joy of transient chaos. Chaos, 2015, 25, 097619.	2.5	70
23	Memory effects in chaotic advection of inertial particles. New Journal of Physics, 2014, 16, 073008.	2.9	30
24	Chaotic motion of light particles in an unsteady three-dimensional vortex: Experiments and simulation. Physical Review E, 2014, 90, 013002.	2.1	2
25	Asymptotic observability of low-dimensional powder chaos in a three-degrees-of-freedom scattering system. Physical Review E, 2014, 90, 022906.	2.1	16
26	Topological Entropy: A Lagrangian Measure of the State of the Free Atmosphere. Journals of the Atmospheric Sciences, 2013, 70, 4030-4040.	1.7	17
27	Doubly Transient Chaos: Generic Form of Chaos in Autonomous Dissipative Systems. Physical Review Letters, 2013, 111, 194101.	7.8	31
28	Influence of the history force on inertial particle advection: Gravitational effects and horizontal diffusion. Physical Review E, 2013, 88, 042909.	2.1	29
29	Annual variability in a conceptual climate model: Snapshot attractors, hysteresis in extreme events, and climate sensitivity. Chaos, 2012, 22, 023110.	2.5	57
30	Transient Chaos. Applied Mathematical Sciences (Switzerland), 2011, , .	0.8	294
31	A minimal dynamical model for tidal synchronization and orbit circularization. Celestial Mechanics and Dynamical Astronomy, 2011, 109, 181-200.	1.4	3
32	Memory Effects are Relevant for Chaotic Advection of Inertial Particles. Physical Review Letters, 2011, 107, 244501.	7.8	50
33	Chaotic saddles in a gravitational field: The case of inertial particles in finite domains. Physical Review E, 2011, 83, 056203.	2.1	5
34	Quasipotential approach to critical scaling in noise-induced chaos. Physical Review E, 2010, 81, 056208.	2.1	20
35	Coagulation and fragmentation dynamics of inertial particles. Physical Review E, 2009, 80, 026311.	2.1	13
36	Chaotic transients in spatially extended systems. Physics Reports, 2008, 460, 245-275.	25.6	114

#	Article	IF	CITATIONS
37	NOISE-INDUCED CHAOS: A CONSEQUENCE OF LONG DETERMINISTIC TRANSIENTS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 509-520.	1.7	29
38	Aggregation and fragmentation dynamics of inertial particles in chaotic flows. Physical Review E, 2008, 77, 055301.	2.1	12
39	Chemical and biological activity in open flows: A dynamical system approach. Physics Reports, 2005, 413, 91-196.	25.6	183
40	Universality in active chaos. Chaos, 2004, 14, 72-78.	2.5	11
41	Reactive Particles in Random Flows. Physical Review Letters, 2004, 92, 174101.	7.8	22
42	Extracting flow structures from tracer data. Ocean Dynamics, 2003, 53, 64-72.	2.2	20
43	Finite-size effects on active chaotic advection. Physical Review E, 2002, 65, 026216.	2.1	26
44	Escape-Rate Formalism, Decay to Steady States, and Divergences in the Entropy-Production Rate. Journal of Statistical Physics, 2002, 109, 875-893.	1.2	4
45	Multibaker map for shear flow and viscous heating. Physical Review E, 2001, 64, 056106.	2.1	6
46	A model for resolving the plankton paradox: coexistence in open flows. Freshwater Biology, 2000, 45, 123-132.	2.4	37
47	Modeling Thermostating, Entropy Currents, and Cross Effects by Dynamical Systems. Journal of Statistical Physics, 2000, 101, 79-105.	1.2	14
48	Topological scaling and gap filling at crisis. Physical Review E, 2000, 61, 5019-5032.	2.1	31
49	Multifractal structure of chaotically advected chemical fields. Physical Review E, 2000, 61, 3857-3866.	2.1	44
50	Thermodynamic cross effects from dynamical systems. Physical Review E, 2000, 61, R3295-R3298.	2.1	12
51	Multibaker map for thermodynamic cross effects in dynamical systems. Physical Review E, 2000, 62, 349-365.	2.1	14
52	Fluctuation theorems for entropy production in open systems. Physical Review E, 2000, 61, R4679-R4682.	2.1	21
53	Chaotic advection, diffusion, and reactions in open flows. Chaos, 2000, 10, 89-98.	2.5	63
54	Chemical or biological activity in open chaotic flows. Physical Review E, 1999, 59, 5468-5481.	2.1	51

TamÃis TéL

#	Article	IF	CITATIONS
55	Entropy balance in the presence of drift and diffusion currents: An elementary chaotic map approach. Physical Review E, 1998, 58, 1672-1684.	2.1	32
56	Advection of Active Particles in Open Chaotic Flows. Physical Review Letters, 1998, 80, 500-503.	7.8	95
57	Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem. Physical Review E, 1997, 56, 2858-2868.	2.1	92
58	Equivalence of Irreversible Entropy Production in Driven Systems: An Elementary Chaotic Map Approach. Physical Review Letters, 1997, 79, 2759-2762.	7.8	51
59	Entropy Production for Open Dynamical Systems. Physical Review Letters, 1996, 77, 2945-2948.	7.8	47
60	Critical Exponent for Gap Filling at Crisis. Physical Review Letters, 1996, 77, 3102-3105.	7.8	33
61	CROSSOVER BETWEEN THE CONTROL OF PERMANENT AND TRANSIENT CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1993, 03, 757-764.	1.7	7
62	Conditions for the abrupt bifurcation to chaotic scattering. Chaos, 1993, 3, 495-503.	2.5	9
63	On the stationary distribution of self-sustained oscillators around bifurcation points. Journal of Statistical Physics, 1988, 50, 897-912.	1.2	13
64	THE THERMODYNAMICS OF FRACTALS. Series on Directions in Condensed Matter Physics, 1988, , 194-237.	0.1	17