Andreas Stäbler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7651780/publications.pdf

Version: 2024-02-01

30	1,105	17 h-index	29
papers	citations		g-index
30	30	30	1759
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Impact of Hydrolyzed Whey Protein on the Molecular Interactions and Cross-Linking Density in Whey Protein Isolate-Based Films. International Journal of Polymer Science, 2016, 2016, 1-9.	1.2	167
2	State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review. Coatings, 2016, 6, 1.	1.2	164
3	Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability, 2017, 9, 1492.	1.6	123
4	Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Industrial Crops and Products, 2015, 69, 110-122.	2.5	91
5	Influence of process conditions during aqueous protein extraction upon yield from pre-pressed and cold-pressed rapeseed press cake. Industrial Crops and Products, 2018, 112, 236-246.	2.5	85
6	Properties of Transglutaminase Crosslinked Whey Protein Isolate Coatings and Cast Films. Packaging Technology and Science, 2014, 27, 799-817.	1.3	66
7	Kinetics of enzymatic esterification of glycerol and free fatty acids in crude Jatropha oil by immobilized lipase from Rhizomucor miehei. Journal of Molecular Catalysis B: Enzymatic, 2014, 107, 1-7.	1.8	39
8	Storage time-dependent alteration of molecular interaction–property relationships of whey protein isolate-based films and coatings. Journal of Materials Science, 2015, 50, 4396-4404.	1.7	39
9	Optimization of androstenedione production in an organic–aqueous two-liquid phase system. Journal of Molecular Catalysis B: Enzymatic, 2004, 29, 19-23.	1.8	35
10	Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films. Frontiers in Chemistry, 2016, 4, 49.	1.8	33
11	Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly(lactic acid) and Potato Pulp Powder. International Journal of Molecular Sciences, 2019, 20, 675.	1.8	29
12	Enzyme-assisted process for DAG synthesis in edible oils. Food Chemistry, 2015, 176, 263-270.	4.2	27
13	Thermal and Mechanical Properties of Biocomposites Made of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Potato Pulp Powder. Polymers, 2019, 11, 308.	2.0	25
14	Enzymatic esterification of free fatty acids in vegetable oils utilizing different immobilized lipases. Biotechnology Letters, 2015, 37, 169-174.	1.1	23
15	Inter-Correlation among the Hydrophilic–Lipophilic Balance, Surfactant System, Viscosity, Particle Size, and Stability of Candelilla Wax-Based Dispersions. Coatings, 2018, 8, 469.	1.2	23
16	Effect of Potato Pulp Filler on the Mechanical Properties and Water Vapor Transmission Rate of Thermoplastic WPI/PBS Blends. Polymer-Plastics Technology and Engineering, 2016, 55, 510-517.	1.9	17
17	Liquid and Solid Functional Bio-Based Coatings. Polymers, 2021, 13, 3640.	2.0	17
18	Screening of impact factors on the enzymatic neutralization of Jatropha crude oil. European Journal of Lipid Science and Technology, 2014, 116, 185-192.	1.0	15

#	Article	IF	CITATIONS
19	Characterization of (i) Jatropha curcas (i) L. Protein Cast Films with respect to Packaging Relevant Properties. International Journal of Polymer Science, 2015, 2015, 1-9.	1.2	14
20	Mechanical and barrier properties of thermoplastic whey protein isolate/ethylene vinyl acetate blends. Journal of Applied Polymer Science, 2014, 131 , .	1.3	13
21	Preparation and Compatibilization of PBS/Whey Protein Isolate Based Blends. Molecules, 2020, 25, 3313.	1.7	13
22	Mechanical and Barrier Properties of Potato Protein Isolate-Based Films. Coatings, 2018, 8, 58.	1.2	10
23	Enzymatic Degumming of Crude Jatropha Oil: Evaluation of Impact Factors on the Removal of Phospholipids. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 2135-2141.	0.8	9
24	Enzyme-assisted deacidification of Jatropha crude oil by statistical design of experiments. European Journal of Lipid Science and Technology, 2014, 116, 1421-1431.	1.0	7
25	Influence of Protein Extraction Techniques of Different De-oiled Residues from Jatropha curcas L. on Protein Recovery and Techno-functional Properties. Waste and Biomass Valorization, 2015, 6, 225-235.	1.8	5
26	Effect of Acylation of Rapeseed Proteins with Lauroyl and Oleoyl Chloride on Solubility and Film-Forming Properties. Waste and Biomass Valorization, 2021, 12, 745-755.	1.8	5
27	Comparison of Two Protein Extraction Techniques Utilizing Aqueous De-Oiled Residue from Jatropha curcas L. Waste and Biomass Valorization, 2014, 5, 33-41.	1.8	4
28	Kinetics of lipase-catalyzed de-acidification of degummed rapeseed oil utilizing monoacylglycerol as acyl-group acceptor. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 40-46.	1.8	4
29	Adhesive based on micellar lupin protein isolate exhibiting oxygen barrier properties. Journal of Applied Polymer Science, 2018, 135, 46383.	1.3	3
30	Gewinnung eines partialglyceridhaltigen Biokraftstoffs durch enzymatische Teilethanolyse von Pflanzenöl. Chemie-Ingenieur-Technik, 2009, 81, 1809-1814.	0.4	0