Magali Waelbroeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7651472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the glucagon receptor first extracellular loop by the substituted cysteine accessibility method. Peptides, 2011, 32, 1593-1599.	2.4	18
2	Mutational and Cysteine Scanning Analysis of the Glucagon Receptor N-terminal Domain. Journal of Biological Chemistry, 2010, 285, 30951-30958.	3.4	16
3	An alternative presentation of metabolism. Biochemistry and Molecular Biology Education, 2007, 35, 233-237.	1.2	Ο
4	Techniques: Promiscuous GÎ \pm proteins in basic research and drug discovery. Trends in Pharmacological Sciences, 2005, 26, 595-602.	8.7	125
5	G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction?. Biochemical Pharmacology, 2004, 68, 799-806.	4.4	40
6	Allosteric drugs acting at muscarinic acetylcholine receptors. Neurochemical Research, 2003, 28, 419-422.	3.3	7
7	Evidence for a direct interaction between the Thr11 residue of vasoactive intestinal polypeptide and Tyr184 located in the first extracellular loop of the VPAC2 receptor. Biochemical Journal, 2003, 370, 1003-1009.	3.7	2
8	Mutational analysis of the glucagon receptor: similarities with the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP)/secretin receptors for recognition of the ligand's third residue. Biochemical Journal, 2002, 362, 389-394.	3.7	35
9	Mutational analysis of the glucagon receptor: similarities with the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP)/secretin receptors for recognition of the ligand's third residue. Biochemical Journal, 2002, 362, 389.	3.7	33
10	VPAC1 receptors have different agonist efficacy profiles on membrane and intact cells. Cellular Signalling, 2002, 14, 689-694.	3.6	5
11	Transglutaminase-mediated polyamination of vasoactive intestinal peptide (VIP) Gln16 residue modulates VIP/PACAP receptor activity. FEBS Journal, 2002, 269, 3211-3219.	0.2	6
12	A Small Sequence in the Third Intracellular Loop of the VPAC1 Receptor Is Responsible for Its Efficient Coupling to the Calcium Effector. Molecular Endocrinology, 2002, 16, 1089-1096.	3.7	8
13	Two Basic Residues of the h-VPAC1 Receptor Second Transmembrane Helix Are Essential for Ligand Binding and Signal Transduction. Journal of Biological Chemistry, 2001, 276, 1084-1088.	3.4	60
14	Activation of Guanosine 5′-[γ- ³⁵ S]thio-triphosphate Binding through M ₁ Muscarinic Receptors in Transfected Chinese Hamster Ovary Cell Membranes: 1. Mathematical Analysis of Catalytic G Protein Activation. Molecular Pharmacology, 2001, 59, 875-885.	2.3	20
15	Activation of Guanosine 5′-[γ- ³⁵ S]thio-triphosphate Binding through M ₁ Muscarinic Receptors in Transfected Chinese Hamster Ovary Cell Membranes: 2. Testing the "Two-States―Model of Receptor Activation. Molecular Pharmacology, 2001, 59, 886-893.	2.3	14
16	Evidence that the lizard helospectin peptides are O-glycosylated. FEBS Journal, 2000, 267, 4556-4560.	0.2	6
17	Characterization of a novel VPAC1 selective agonist and identification of the receptor domains implicated in the carboxyl-terminal peptide recognition. British Journal of Pharmacology, 2000, 130, 819-826.	5.4	9
18	Different Vasoactive Intestinal Polypeptide Receptor Domains Are Involved in the Selective Recognition of Two VPAC2-Selective Ligands. Molecular Pharmacology, 1999, 56, 1280-1287.	2.3	38

MAGALI WAELBROECK

#	Article	IF	CITATIONS
19	Vasoactive intestinal polypeptide VPAC1 and VPAC2 receptor chimeras identify domains responsible for the specificity of ligand binding and activation. FEBS Journal, 1999, 265, 449-456.	0.2	25
20	Evidence for Multiple Rat VPAC1 Receptor States with Different Affinities for Agonists. Cellular Signalling, 1999, 11, 691-696.	3.6	7
21	Kinetics versus equilibrium: the importance of GTP in GPCR activation. Trends in Pharmacological Sciences, 1999, 20, 477-481.	8.7	21
22	Properties of a Recombinant Human Secretin Receptor. Pancreas, 1999, 19, 51-55.	1.1	3
23	A Critical View of the Methods for Characterization of the VIP/PACAP Receptor Subclassesa. Annals of the New York Academy of Sciences, 1998, 865, 157-163.	3.8	14
24	Interaction of lipophilic VIP derivatives with recombinant VIP1/PACAP and VIP2/PACAP receptors. European Journal of Pharmacology, 1998, 354, 105-111.	3.5	30
25	Contribution of the second transmembrane helix of the secretin receptor to the positioning of secretin. FEBS Letters, 1998, 424, 207-210.	2.8	46
26	Vasoactive intestinal peptide modification at position 22 allows discrimination between receptor subtypes. European Journal of Pharmacology, 1998, 348, 95-99.	3.5	25
27	The Long-Acting Vasoactive Intestinal Polypeptide Agonist RO 25-1553 Is Highly Selective of the VIP 2 Receptor Subclass. Peptides, 1997, 18, 403-408.	2.4	162
28	Development of High Affinity Selective VIP1 Receptor Agonists. Peptides, 1997, 18, 1539-1545.	2.4	190
29	In Vitro Properties of a High Affinity Selective Antagonist of the VIP1 Receptor. Peptides, 1997, 18, 1555-1560.	2.4	173
30	Mutational Analysis of Extracellular Cysteine Residues of Rat Secretin Receptor Shows that Disulfide Bridges are Essential for Receptor Function. FEBS Journal, 1997, 246, 173-180.	0.2	44
31	Seven Helix Receptors are Enzymes Catalysing G Protein Activation. What is the Agonist Kact?. Journal of Theoretical Biology, 1997, 187, 15-37.	1.7	19
32	The C-terminus ends of secretin and VIP interact with the N-terminal domains of their receptors. Peptides, 1996, 17, 825-829.	2.4	78
33	Interaction of Amino Acid Residues at Positions 8-15 of Secretin with the N-Terminal Domain of the Secretin Receptor. FEBS Journal, 1996, 239, 349-355.	0.2	36
34	Pharmacological properties of two recombinant splice variants of the PACAP type I receptor, transfected and stably expressed in CHO cells. European Journal of Pharmacology, 1995, 288, 259-267.	2.6	46
35	The (S)-(+)-enantiomer of dimethindene: a novel M2-selective muscarinic receptor antagonist. European Journal of Pharmacology, 1995, 286, 229-240.	3.5	24
36	Properties of the VIP-PACAP type II receptor stably expressed in CHO cells. Regulatory Peptides, 1994, 54, 397-407.	1.9	58

#	ARTICLE (Hydroxymethyl)diphenyl(piperidinoalkyl)silane des Typs (HOCH2)(C6H5)2Si(CH2)in(C5H10(n=2.3) und	IF	CITATIONS
37	deren Methoiodide: Synthese, Struktur und antimuscarinische Eigenschaften / (Hydroxymethyl)diphenyl(piperidinoalkyl)silanes of the Type (HOCH2)(C6H5)2Si(CH2)nNC5H10(n = 2,3) and their Methiodides: Synthesis, Structure and Antimuscarinic Properties. Zeitschrift Fur	0.7	8
38	Characterization and regulation of the expression of scyllatoxin (Leiurotoxin I) receptors in the human neuroblastoma cell line NB-OK 1. FEBS Letters, 1991, 285, 271-274.	2.8	4
39	Stereoselectivity of procyclidine binding to muscarinic receptor subtypes M1, M2 and M4. European Journal of Pharmacology, 1990, 189, 135-142.	2.6	24
40	Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes. European Journal of Pharmacology, 1989, 168, 71-80.	3.5	101
41	Stereoselectivity of the enantiomers of trihexyphenidyl and its methiodide at muscarinic receptor subtypes. European Journal of Pharmacology, 1988, 155, 167-170.	3.5	37
42	A new type of functional VIP receptor has an affinity for helodermin in human SUP-T1 lymphoblasts. FEBS Letters, 1988, 228, 351-355.	2.8	54
43	CCK and gastrin inhibit adenylate cyclase activity through a pertussis toxin-sensitive mechanism in the tumoral rat pancreatic acinar cell line AR 4-2J. FEBS Letters, 1988, 242, 61-64.	2.8	34
44	80% of muscarinic receptors expressed by the NB-OK 1 human neuroblastoma cell line show high affinity for pirenzepine and are comparable to rat hippocampus M1 receptors. FEBS Letters, 1988, 226, 287-290.	2.8	32
45	Vasoactive Intestinal Peptide Receptors in Pancreas and Liver. Structure-Function Relationship. Annals of the New York Academy of Sciences, 1988, 527, 238-256.	3.8	18
46	Effect of freezing on the coupling of VIP receptors to adenylate cyclase in rat liver membranes. Life Sciences, 1988, 42, 505-510.	4.3	5
47	Different antagonist binding properties of rat pancreatic and cardiac muscarinic receptors. Life Sciences, 1987, 41, 2235-2240.	4.3	25
48	[d-Phe4]Peptide histidine-isoleucinamide ([d-Phe4]PHI), a highly selective vasoactive-intestinal-peptide (VIP) agonist, discriminates VIP-preferring from secretin-preferring receptors in rat pancreatic membranes. FEBS Journal, 1987, 165, 243-249.	0.2	16
49	Secoverine is a non-selective muscarinic antagonist on rat heart and brain receptors. European Journal of Pharmacology, 1986, 127, 17-25.	3.5	19
50	Alterations of rat cardiac adenylate cyclase activity with age. European Journal of Pharmacology, 1986, 126, 91-95.	3.5	10
51	Comparative structural requirements of thirty GRF analogs for interaction with GRF- and VIP receptors and coupling to adenylate cyclase in rat adenopituitary, liver and pancreas. Peptides, 1986, 7, 53-59.	2.4	22
52	Effector mechanisms of peptides of the VIP family. Peptides, 1986, 7, 101-107.	2.4	22
53	Interaction of vasoactive intestinal peptide (VIP) and N-terminally modified VIP analogs with rat pancreatic, hepatic and pituitary membranes. FEBS Journal, 1986, 159, 45-49.	0.2	47
54	In Vitro Effects of Gallamine on Dissociation Kinetics of (3H) N-Methylscopolamine and (3H) Pirenzepine from Rat Brain Muscarinic Receptors. Journal of Receptors and Signal Transduction, 1986, 6, 47-61.	1.2	11

#	Article	IF	CITATIONS
55	Interaction of Growth Hormone-Releasing Factor (GRF) and 14 GRF Analogs with Vasoactive Intestinal Peptide (VIP) Receptors of Rat Pancreas. Discovery of (N-Ac-Tyr1,D-Phe2)-GRF(l-29)-NH2as a VIP Antagonist*. Endocrinology, 1985, 116, 2643-2649.	2.8	154
56	Secretin-induced changes in rate, contractility and adenylate cyclase activity in rat heart atria. Pflugers Archiv European Journal of Physiology, 1984, 401, 1-5.	2.8	13
57	Purification of a novel pancreatic secretory factor (PSF) and a novel peptide with VIP- and secretin-like properties (helodermin) from Gila monster venom. FEBS Letters, 1984, 166, 273-276.	2.8	68
58	Evidence that helodermin, a newly extracted peptide from Gila monster venom, is a member of the secretin/VIP/PHI family of peptides with an original pattern of biological properties. FEBS Letters, 1984, 166, 277-282.	2.8	57
59	Pancreatic secretory factor (PSF), a protein from Gila monster venom stimulating enzyme secretion from rat pancreatic acini. FEBS Letters, 1984, 166, 283-287.	2.8	9
60	Specific labelling by [125 I]helodermin of high-affinity VIP receptors in rat liver membranes. FEBS Letters, 1984, 172, 55-58.	2.8	45
61	Importance of disulfide bonds in receptors for vasoactive intestinal peptide and secretin in rat pancreatic plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1984, 773, 271-278.	2.6	44
62	Effects of verapamil on the binding properties of rat heart muscarinic receptors: Evidence for an allosteric site. Biochemical and Biophysical Research Communications, 1984, 121, 340-345.	2.1	35
63	Inhibition of Forskolin-stimulated cardiac adenylate cyclase activity by short-chain alcohols. FEBS Letters, 1983, 154, 205-208.	2.8	18
64	Similarities of the Guanine Nucleotide Binding Sites Responsible for Adenylate Cyclase Activation and Carbamylcholine Binding Inhibition in Rat Heart Membranes. Protides of the Biological Fluids; Proceedings of the Colloquium, 1982, 29, 381-384.	0.1	2
65	Heterogeneity of Vip-Secretin Receptors in three Rat Tissues. Protides of the Biological Fluids; Proceedings of the Colloquium, 1982, 29, 509-512.	0.1	1
66	Stimulation by ionophore A23187and carbamylcholine of prostaglandins release from the thyroid glandin vitro. Archives Internationales De Physiologie Et De Biochimie, 1977, 85, 1031-1032.	0.2	5
67	Biological Recognition of Enantiomeric Silanes and Germanes: Syntheses and Antimuscarinic Properties of the Enantiomers of the Si/Ge Analogues Cyclohexyl(hydroxymethyl)phenyl(2-Piperidinoethyl)silane and -Germane and Their Methiodides. , 0, , 231-236.		0
68	Biological Recognition of Enantiomeric Silanes and Germanes: Syntheses and Antimuscarinic Properties of the Enantiomers of the Si/Ge Analogues Cyclohexyl(hydroxymethyl)phenyl(2-Piperidinoethyl)silane and -Germane and Their Methiodides. , 0, , 231-236.		0