Kevin Cassel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7651080/publications.pdf

Version: 2024-02-01

759233 642732 31 561 12 23 citations h-index g-index papers 33 33 33 402 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A cohort study showing correspondence of low wall shear stress and cephalic arch stenosis in brachiocephalic arteriovenous fistula access. Journal of Vascular Access, 2021, 22, 380-387.	0.9	8
2	Restoration of wall shear stress in the cephalic vein during extreme hemodynamics. Journal of Medical Engineering and Technology, 2018, 42, 617-627.	1.4	6
3	Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?. Journal of Biomechanical Engineering, 2017, 139, .	1.3	6
4	A predictive framework to elucidate venous stenosis: CFD & Deamp; shape optimization. Computer Methods in Applied Mechanics and Engineering, 2017, 321, 46-69.	6.6	9
5	On the origins of vortex shedding in two-dimensional incompressible flows. Theoretical and Computational Fluid Dynamics, 2016, 30, 511-527.	2.2	14
6	Increased Inlet Blood Flow Velocity Predicts Low Wall Shear Stress in the Cephalic Arch of Patients with Brachiocephalic Fistula Access. PLoS ONE, 2016, 11, e0152873.	2.5	23
7	Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array. Acta Applicandae Mathematicae, 2014, 132, 295-305.	1.0	4
8	Hemodynamics in the cephalic arch of a brachiocephalic fistula. Medical Engineering and Physics, 2014, 36, 822-830.	1.7	34
9	Unsteady separation in vortex-induced boundary layers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130348.	3.4	14
10	Analysis of complex singularities in high-Reynolds-number Navier–Stokes solutions. Journal of Fluid Mechanics, 2014, 747, 381-421.	3.4	25
11	A pressure-gradient mechanism for vortex shedding in constricted channels. Physics of Fluids, 2013, 25, 123603.	4.0	12
12	A Rayleigh instability in a vortex-induced unsteady boundary layer. Physica Scripta, 2010, T142, 014006.	2.5	7
13	Vortex-Shedding Mechanisms in Internal Flows. , 2010, , .		O
14	Characteristic differences in cephalic arch geometry for diabetic and non-diabetic ESRD patients. Nephrology Dialysis Transplantation, 2009, 24, 2190-2194.	0.7	27
15	Suppression of Unsteady Boundary-Layer Separation Using Sub-Optimal Control., 2009,,.		O
16	Introduction: 23rd Annual Gallery of Fluid Motion (Chicago, Illinois, 2005). Physics of Fluids, 2006, 18, 091101.	4.0	0
17	On the ejection-induced instability in Navier–Stokes solutions of unsteady separation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 1189-1198.	3.4	12
18	A Rayleigh Instability in Navier-Stokes Solutions of an Unsteady Boundary Layer. , 2005, , .		0

#	Article	IF	CITATIONS
19	Instabilities and Vorticity Shedding in Wall-Bounded Flows. , 2004, , .		1
20	Recent progress in neutrino factory and muon collider research within the Muon Collaboration. Physical Review Special Topics: Accelerators and Beams, 2003, 6, .	1.8	123
21	Current LH2-absorber R&D in MuCool. Journal of Physics G: Nuclear and Particle Physics, 2003, 29, 1689-1692.	3.6	4
22	Detachment of the Dynamic-Stall Vortex Above a Moving Surface. AIAA Journal, 2002, 40, 1811-1822.	2.6	10
23	Navier–Stokes solutions of unsteady separation induced by a vortex. Journal of Fluid Mechanics, 2002, 465, 99-130.	3.4	39
24	Detachment of the dynamic-stall vortex above a moving surface. AIAA Journal, 2002, 40, 1811-1822.	2.6	1
25	Detachment of the dynamic-stall vortex above a moving surface. , 2001, , .		O
26	The effect of convective heat transfer on unsteady boundary-layer separation. Journal of Fluid Mechanics, 2001, 428, 107-131.	3.4	7
27	Energy absorber R&D. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 472, 632-638.	1.6	4
28	A comparison of Navier-Stokes solutions with the theoretical description of unsteady separation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 3207-3227.	3.4	21
29	The influence of wall cooling on hypersonic boundary-layer separation and stability. Journal of Fluid Mechanics, 1996, 321, 189-216.	3.4	14
30	The onset of instability in unsteady boundary-layer separation. Journal of Fluid Mechanics, 1996, 315, 223-256.	3.4	53
31	An instability in supersonic boundary-layer flow over a compression ramp. Journal of Fluid Mechanics, 1995, 300, 265-285.	3.4	38