MarÃ-a L GarcÃ-a-Rubio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7650880/publications.pdf

Version: 2024-02-01

218677 315739 3,276 38 26 38 g-index citations h-index papers 39 39 39 3415 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transcription-Coupled Nucleotide Excision Repair Factors Promote R-Loop-Induced Genome Instability. Molecular Cell, 2014, 56, 777-785.	9.7	445
2	BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature, 2014, 511, 362-365.	27.8	428
3	The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genetics, 2015, 11, e1005674.	3.5	244
4	Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO Journal, 2011, 30, 3106-3119.	7.8	191
5	The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription–replication conflicts. Genes and Development, 2014, 28, 735-748.	5.9	152
6	FANCD2 Facilitates Replication through Common Fragile Sites. Molecular Cell, 2016, 64, 388-404.	9.7	151
7	Nucleoporins Prevent DNA Damage Accumulation by Modulating Ulp1-dependent Sumoylation Processes. Molecular Biology of the Cell, 2007, 18, 2912-2923.	2.1	129
8	Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Reports, 2004, 5, 47-53.	4.5	123
9	Hpr1 Is Preferentially Required for Transcription of Either Long or G+C-Rich DNA Sequences in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 7054-7064.	2.3	106
10	Interdependence between Transcription and mRNP Processing and Export, and Its Impact on Genetic Stability. Molecular Cell, 2005, 18, 711-722.	9.7	105
11	Molecular Evidence That the Eukaryotic THO/TREX Complex Is Required for Efficient Transcription Elongation. Journal of Biological Chemistry, 2003, 278, 39037-39043.	3.4	92
12	Histone Mutants Separate R Loop Formation from Genome Instability Induction. Molecular Cell, 2017, 66, 597-609.e5.	9.7	87
13	Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO Journal, 2003, 22, 612-620.	7.8	84
14	Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair. PLoS Genetics, 2009, 5, e1000364.	3.5	81
15	Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature, 2013, 493, 116-119.	27.8	76
16	The Npl3 hnRNP prevents R-loop-mediated transcription–replication conflicts and genome instability. Genes and Development, 2013, 27, 2445-2458.	5.9	72
17	The DNA damage response acts as a safeguard against harmful DNA–RNA hybrids of different origins. EMBO Reports, 2019, 20, e47250.	4.5	72
18	Transcription and Double-Strand Breaks Induce Similar Mitotic Recombination Events in <i>Saccharomyces cerevisiae (i). Genetics, 2002, 162, 603-614.</i>	2.9	63

#	Article	IF	CITATIONS
19	Yra1-bound RNA–DNA hybrids cause orientation-independent transcription–replication collisions and telomere instability. Genes and Development, 2018, 32, 965-977.	5.9	58
20	The Stress-activated Protein Kinase Hog1 Mediates S Phase Delay in Response to Osmostress. Molecular Biology of the Cell, 2009, 20, 3572-3582.	2.1	57
21	Detection of DNA-RNA Hybrids In Vivo. Methods in Molecular Biology, 2018, 1672, 347-361.	0.9	54
22	A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO Journal, 2011, 30, 1953-1964.	7.8	50
23	Tho 1, a Novel hnRNP, and Sub 2 Provide Alternative Pathways for mRNP Biogenesis in Yeast THO Mutants. Molecular and Cellular Biology, 2006, 26, 4387-4398.	2.3	41
24	An hpr1 Point Mutation That Impairs Transcription and mRNP Biogenesis without Increasing Recombination. Molecular and Cellular Biology, 2006, 26, 7451-7465.	2.3	36
25	RNA polymerase II contributes to preventing transcriptionâ€mediated replication fork stalls. EMBO Journal, 2015, 34, 236-250.	7.8	35
26	Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Molecular Genetics and Genomics, 2008, 279, 123-132.	2.1	32
27	Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts. Nature Communications, 2018, 9, 379.	12.8	32
28	Harmful R-loops are prevented via different cell cycle-specific mechanisms. Nature Communications, 2021, 12, 4451.	12.8	32
29	Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability. Nucleic Acids Research, 2011, 39, 6002-6015.	14.5	23
30	Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes. Nucleic Acids Research, 2012, 40, 1050-1064.	14.5	23
31	Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening. PLoS Genetics, 2016, 12, e1005966.	3.5	21
32	Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner. ELife, 2020, 9, .	6.0	20
33	A genome-wide function of THSC/TREX-2 at active genes prevents transcription–replication collisions. Nucleic Acids Research, 2014, 42, 12000-12014.	14.5	17
34	New Suppressors of THO Mutations Identify Thp3 (Ypr045c)-Csn12 as a Protein Complex Involved in Transcription Elongation. Molecular and Cellular Biology, 2011, 31, 674-685.	2.3	14
35	WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage. Nature Communications, 2022, 13 , .	12.8	13
36	A reduction in RNA polymerase II initiation rate suppresses hyper-recombination and transcription-elongation impairment of THO mutants. Molecular Genetics and Genomics, 2008, 280, 327-336.	2.1	11

#	Article	IF	CITATIONS
37	<i>VID22</i> counteracts G-quadruplex-induced genome instability. Nucleic Acids Research, 2021, 49, 12785-12804.	14.5	5
38	C. elegans THSC/TREX-2 deficiency causes replication stress and genome instability. Journal of Cell Science, 2021, 134, .	2.0	1