Maysaa Mohamed Al Qurashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7650189/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analytical Solutions of the Electrical RLC Circuit via Liouville–Caputo Operators with Local and Non-Local Kernels. Entropy, 2016, 18, 402.	2.2	91
2	Optical and other solitons for the fourth-order dispersive nonlinear SchrĶdinger equation with dual-power law nonlinearity. Superlattices and Microstructures, 2017, 105, 183-197.	3.1	90
3	New Exact Solutions of the Generalized Benjamin–Bona–Mahony Equation. Symmetry, 2019, 11, 20.	2.2	61
4	A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships. Entropy, 2017, 19, 375.	2.2	49
5	Bateman–Feshbach Tikochinsky and Caldirola–Kanai Oscillators with New Fractional Differentiation. Entropy, 2017, 19, 55.	2.2	49
6	Dynamical analysis of fractional order model of immunogenic tumors. Advances in Mechanical Engineering, 2016, 8, 168781401665670.	1.6	42
7	Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel. Advances in Mechanical Engineering, 2017, 9, 168781401769006.	1.6	40
8	Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives. Advances in Mechanical Engineering, 2016, 8, 168781401668330.	1.6	38
9	An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems. Energies, 2020, 13, 2725.	3.1	33
10	Solving Helmholtz Equation with Local Fractional Derivative Operators. Fractal and Fractional, 2019, 3, 43.	3.3	30
11	Finite Difference Method for Time-Space Fractional Advection–Diffusion Equations with Riesz Derivative. Entropy, 2018, 20, 321.	2.2	28
12	Analysis of a New Fractional Model for Damped Bergers' Equation. Open Physics, 2017, 15, 35-41.	1.7	23
13	Modified Modelling for Heat Like Equations within Caputo Operator. Energies, 2020, 13, 2002.	3.1	23
14	Approximate analytical solutions of Goursat problem within local fractional operators. Journal of Nonlinear Science and Applications, 2016, 09, 4829-4837.	1.0	22
15	On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations. Entropy, 2016, 18, 420.	2.2	21
16	Optical solitons in multiple-core couplers with the nearest neighbors linear coupling. Optik, 2017, 142, 343-353.	2.9	20
17	Numerical Solution of the Boundary Value Problems Arising in Magnetic Fields and Cylindrical Shells. Mathematics, 2019, 7, 508.	2.2	20
18	NEW COMPUTATIONS OF OSTROWSKI-TYPE INEQUALITY PERTAINING TO FRACTAL STYLE WITH APPLICATIONS. Fractals, 2021, 29, 2140026.	3.7	17

#	Article	IF	CITATIONS
19	ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE. Fractals, 2021, 29, 2140027.	3.7	16
20	A novel computational approach to approximate fuzzy interpolation polynomials. SpringerPlus, 2016, 5, 1428.	1.2	13
21	New formulation for discrete dynamical type inequalities via \$ h \$-discrete fractional operator pertaining to nonsingular kernel. Mathematical Biosciences and Engineering, 2021, 18, 1794-1812.	1.9	13
22	Solution of Higher Order Nonlinear Time-Fractional Reaction Diffusion Equation. Entropy, 2016, 18, 329.	2.2	12
23	Approximate solutions of bright and dark optical solitons in birefrigent fibers. Optik, 2017, 140, 45-61.	2.9	12
24	Role of fractal-fractional operators in modeling of rubella epidemic with optimized orders. Open Physics, 2020, 18, 1111-1120.	1.7	8
25	An Analytical Investigation of Fractional-Order Biological Model Using an Innovative Technique. Complexity, 2020, 2020, 1-13.	1.6	7
26	Conserved vectors with conformable derivative for certain systems of partial differential equations with physical applications. Open Physics, 2020, 18, 164-169.	1.7	7
27	On solving fractional mobile/immobile equation. Advances in Mechanical Engineering, 2017, 9, 168781401668861.	1.6	6
28	Analytical Approximate Solutions of (n + 1)-Dimensional Fractal Heat-Like and Wave-Like Equations. Entropy, 2017, 19, 296.	2.2	6
29	Fractional-order partial differential equations describing propagation of shallow water waves depending on power and Mittag-Leffler memory. AIMS Mathematics, 2022, 7, 12587-12619.	1.6	6
30	Reductions and conservation laws for BBM and modified BBM equations. Open Mathematics, 2016, 14, 1138-1148.	1.0	4
31	Invariant subspace and approximate analytic solutions of a fractional model of convective longitudinal fins in thermal conductivity. European Physical Journal Plus, 2019, 134, 1.	2.6	3
32	A Computational Method for Subdivision Depth of Ternary Schemes. Mathematics, 2020, 8, 817.	2.2	3
33	Erratum to "Conserved vectors with conformable derivative for certain systems of partial differential equations with physical applicationsâ€. Open Physics, 2020, 18, 1108-1110.	1.7	1
34	Corrigendum to "A New Approach to Increase the Flexibility of Curves and Regular Surfaces Produced by 4-Point Ternary Subdivision Scheme― Mathematical Problems in Engineering, 2021, 2021, 1-1.	1.1	0