
Yongfeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7649872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile preparation of hausmannite as a high-performance catalyst for toluene combustion. Chinese Journal of Chemical Engineering, 2022, 44, 392-401.	3.5	3
2	Exploring an electric-aid ozone decomposition mode to enhance water resistance over manganese oxide monolith catalyst under high humidity. Journal of Hazardous Materials, 2022, 436, 129252.	12.4	6
3	A facile one-step method for the fabrication of Pd-AlOOH/Al monolithic catalysts via redox reactions of two galvanic cells. Journal of Materials Science, 2021, 56, 2549-2558.	3.7	3
4	Highly efficient blue TADF emitters incorporating bulky acridine moieties and their application in solution-processed OLEDs. Dyes and Pigments, 2021, 188, 109157.	3.7	16
5	Pd-AlOOH/Al Honeycomb Monolith Catalysts Obtained from Pd(II) Complex Precursor with Different Ligands by a Facile One-Step Method. Bulletin of the Chemical Society of Japan, 2021, 94, 1631-1636.	3.2	1
6	Enhanced Catalytic Hydrogen Peroxide Production from Hydroxylamine Oxidation on Modified Activated Carbon Fibers: The Role of Surface Chemistry. Catalysts, 2021, 11, 1515.	3.5	2
7	Self-standing zeolite foam monoliths with hierarchical micro–meso–macroporous structures. Royal Society Open Science, 2020, 7, 200981.	2.4	4
8	Novel Ordered Mesoporous γ-MnO ₂ Catalyst for High-Performance Catalytic Oxidation of Toluene and <i>o</i> -Xylene. Industrial & Engineering Chemistry Research, 2019, 58, 13926-13934.	3.7	54
9	A self-powered electrolytic process for glucose to hydrogen conversion. Communications Chemistry, 2019, 2, .	4.5	21
10	Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	16
11	Controlled synthesis of tunnel-structured MnO2 through hydrothermal transformation of Î-MnO2 and their catalytic combustion of dimethyl ether. Journal of Solid State Chemistry, 2019, 269, 305-311.	2.9	31
12	3D hierarchical structures MnO2/C: A highly efficient catalyst for purification of volatile organic compounds with visible light irradiation. Applied Surface Science, 2018, 447, 191-199.	6.1	17
13	Shape-controlled synthesis of nickel–cobalt–sulfide with enhanced electrochemical activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 2251-2258.	2.2	5
14	Electrostatic self-assembly deposition of manganese dioxide nanosheets on functionalized graphene sheets as supercapacitor electrode. Ceramics International, 2018, 44, 2269-2273.	4.8	13
15	Silver palladium bimetallic core-shell structure catalyst supported on TiO2 for toluene oxidation. Applied Surface Science, 2018, 462, 207-212.	6.1	29
16	Pt-based structured catalysts on metallic supports synthesized by electroless plating deposition for toluene complete oxidation. Catalysis Today, 2017, 281, 542-548.	4.4	16
17	Effect of textual features and surface properties of activated carbon on the production of hydrogen peroxide from hydroxylamine oxidation. RSC Advances, 2017, 7, 25305-25313.	3.6	4
18	Synthesis of NiMoO4 nanosheets on graphene sheets as advanced supercapacitor electrode materials. Materials Letters, 2016, 184, 21-24.	2.6	40

YONGFENG LI

#	Article	IF	CITATIONS
19	Facile one-pot synthesis of a NiMoO ₄ /reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Advances, 2016, 6, 69627-69633.	3.6	51
20	Design of three dimensional hybrid Co3O4@NiMoO4 core/shell arrays grown on carbon cloth as high-performance supercapacitors. RSC Advances, 2016, 6, 13957-13963.	3.6	27
21	Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. Journal of Power Sources, 2014, 251, 202-207.	7.8	127
22	Enhanced activity and stability of Al2O3-pillared layered manganese oxides for DME combustion. Microporous and Mesoporous Materials, 2013, 181, 105-110.	4.4	9
23	The catalytic oxidation of toluene over Pd-based FeCrAl wire mesh monolithic catalysts prepared by electroless plating method. Catalysis Communications, 2012, 29, 127-131.	3.3	28
24	Promoting Effect of Ce in Ce/OMS-2 Catalyst for Catalytic Combustion of Dimethyl Ether. Catalysis Letters, 2011, 141, 111-119.	2.6	59
25	Kinetics of methanol steam reforming over COPZr-2 catalyst. Journal of Natural Gas Chemistry, 2008, 17, 171-174.	1.8	8