Emilia WoÅ,owiec-Korecka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7649621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Boost-diffusion―vacuum carburising – Process optimisation. Vacuum, 2014, 99, 175-179.	3.5	38
2	Non-steady state approach to the vacuum nitriding for tools. Vacuum, 2013, 88, 1-7.	3.5	23
3	Airborne-particle abrasion parameters on the quality of titanium-ceramic bonds. Journal of Prosthetic Dentistry, 2015, 113, 453-459.	2.8	22
4	Precision Case Hardening by Low Pressure Carburizing (LPC) for High Volume Production*. HTM - Journal of Heat Treatment and Materials, 2017, 72, 175-183.	0.2	17
5	Kinetic aspects of low-pressure nitriding process. Vacuum, 2018, 155, 292-299.	3.5	16
6	Mathematical Modelling the Low-Pressure Nitriding Process. Applied Mechanics and Materials, 0, 421, 377-383.	0.2	13
7	Effect of chemical surface treatment of titanium on its bond with dental ceramics. Journal of Prosthetic Dentistry, 2018, 120, 470-475.	2.8	13
8	The Condition of Ni-Cr Alloy Surface After Abrasive Blasting with Various Parameters. Journal of Materials Engineering and Performance, 2020, 29, 1439-1444.	2.5	13
9	System of single-piece flow case hardening for high volume production. Archives of Materials Science and Engineering, 2016, 79, 37-44.	1.1	13
10	Properties of Surface Layers Processed by a New, High-Temperature Vacuum Carburizing Technology with Prenitriding - PreNitLPC®. Advanced Materials Research, 0, 452-453, 401-406.	0.3	12
11	Modeling methods for gas quenching, low-pressure carburizing and low-pressure nitriding. Engineering Structures, 2018, 177, 489-505.	5.3	11
12	The Possibility Of Use Of Laser-Modified Ti6Al4V Alloy In Friction Pairs In Endoprostheses. Archives of Metallurgy and Materials, 2015, 60, 755-758.	0.6	10
13	Neural computing for a low-frictional coatings manufacturing of aircraft engines' piston rings. Neural Computing and Applications, 2019, 31, 4891-4901.	5.6	10
14	The effect of abrasive blasting on the strength of a joint between dental porcelain and metal base. Acta of Bioengineering and Biomechanics, 2014, 16, 63-8.	0.4	10
15	Effect of the Content of Retained Austenite and Grain Size on the Fatigue Bending Strength of Steels Carburized in a Low-Pressure Atmosphere. Metal Science and Heat Treatment, 2014, 56, 440-443.	0.6	8
16	Method of Determining the Strain Hardening of Carburized Elements in Ansys Environment. Solid State Phenomena, 2015, 240, 74-80.	0.3	7
17	Calculation of the Mixture Flow in a Low-Pressure Carburizing Process. Metals, 2019, 9, 439.	2.3	7
18	Low-Pressure Nitriding According to the FineLPN Technology in Multi-Purpose Vacuum Furnaces. Advanced Materials Research, 0, 586, 230-234.	0.3	6

Emilia WoÅ,owiec-Korecka

#	Article	IF	CITATIONS
19	The Precipitation and Dissolution of Alloy Iron Carbides in Vacuum Carburization Processes for Automotive and Aircraft Applications - Part I. Advanced Materials Research, 2012, 486, 297-302.	0.3	6
20	The effect of various primers improving adhesiveness of gel polish hybrids on pH, TOWL and overall nail plates condition. Journal of Cosmetic Dermatology, 2019, 18, 1529-1538.	1.6	6
21	Complex XRD and XRF Characterization of TiN-TiCN-TiC Surface Coatings for Medical Applications. Solid State Phenomena, 0, 225, 159-168.	0.3	5
22	The Role of Carbides in Formation of Surface Layer on Steel X153CrMoV12 Due to Low-Pressure Nitriding (Vacuum Nitriding). Metal Science and Heat Treatment, 2015, 57, 32-35.	0.6	4
23	2D-Finite element analysis of inlay-, onlay bridges with using various materials. Archives of Materials Science and Engineering, 2016, 79, 71-78.	1.1	4
24	Effect of Surface Treatment of Titanium Elements on the Bond Strength to Zirconium Dioxide. Solid State Phenomena, 0, 225, 151-158.	0.3	3
25	Effect of Ni-Cr Alloy Surface Abrasive Blasting on Its Wettability by Liquid Ceramics. Materials, 2021, 14, 2007.	2.9	3
26	The Surface Condition of Ni-Cr after SiC Abrasive Blasting for Applications in Ceramic Restorations. Materials, 2020, 13, 5824.	2.9	3
27	Effect of SiC Abrasive Blasting Parameters on the Quality of the Ceramic and Ni-Cr Dental Alloy Joint. Materials, 2022, 15, 964.	2.9	3
28	Investigating Fatigue Strength of Vacuum Carburized 17CrNi6-6 Steel Using a Resonance High Frequency Method. Solid State Phenomena, 0, 225, 45-52.	0.3	2
29	<scp>The influence of topical</scp> 5% <scp>tranexamic acid at pH</scp> 2.38 <scp>with and without corundum microdermabrasion on pigmentation and skin surface lipids</scp> . Dermatologic Therapy, 2020, 33, e14391.	1.7	2
30	Modeling strength of the connection the metal substrate to the dental ceramics depending on the parameters of the prior abrasive blasting. , 2015, , 714/266-714/269.	0.1	2
31	The Precipitation and Dissolution of Alloy Iron Carbides in Vacuum Carburization Processes for Automotive and Aircraft Applications - Part II. Advanced Materials Research, 2012, 486, 303-308.	0.3	1
32	Evaluation of Wear Resistance of Ti Alloys Used for Elements Friction of Knee Endoprosthesis. Solid State Phenomena, 0, 225, 123-130.	0.3	1
33	Study on homogeneity and repeatability of single-piece flow carburizing system. Journal of Achievements in Materials and Manufacturing Engineering, 2017, 2, 68-75.	0.6	1
34	Methods of data mining for modelling of low-pressure heat treatment. Journal of Achievements in Materials and Manufacturing Engineering, 2017, 1, 31-40.	0.6	1
35	Influence of Flow and Pressure of Carburising Mixture on Low-Pressure Carburising Process Efficiency. Coatings, 2022, 12, 337.	2.6	1
36	Meeting standards for die heat treatment. International Heat Treatment and Surface Engineering, 2014, 8, 183-187.	0.2	0

0

#	Article	IF	CITATIONS
37	Practical Application of Artificial Neural Networks in Designing Parameters of Steel Heat Treatment Processes. Lecture Notes in Computer Science, 2012, , 196-203.	1.3	0

38Welding of Prosthetic Alloys. Archives of Metallurgy and Materials, 2015, 60, 187-191.0.6