Macarena Toll-Riera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7649583/publications.pdf

Version: 2024-02-01

23 papers

1,053 citations

16 h-index 713332 21 g-index

25 all docs

25 docs citations

25 times ranked

1686 citing authors

#	Article	IF	CITATIONS
1	A limit on the evolutionary rescue of an Antarctic bacterium from rising temperatures. Science Advances, 2022, 8, .	4.7	4
2	Staphylococcal phages and pathogenicity islands drive plasmid evolution. Nature Communications, 2021, 12, 5845.	5.8	26
3	Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15755-15762.	3.3	41
4	New insights on Pseudoalteromonas haloplanktis TAC125 genome organization and benchmarks of genome assembly applications using next and third generation sequencing technologies. Scientific Reports, 2019, 9, 16444.	1.6	14
5	Integrative analysis of fitness and metabolic effects of plasmids in <i>Pseudomonas aeruginosa</i> PAO1. ISME Journal, 2018, 12, 3014-3024.	4.4	80
6	Mistranslation can enhance fitness through purging of deleterious mutations. Nature Communications, 2017, 8, 15410.	5.8	28
7	The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa. PLoS Genetics, 2016, 12, e1006005.	1.5	35
8	Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in <i>Pseudomonas aeruginosa</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 1659-1666.	1.1	18
9	The genomic basis of adaptation to the fitness cost of rifampicin resistance in <i>Pseudomonas aeruginosa < /i>. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152452.</i>	1.2	25
10	Sequencing of plasmids pAMBL1 and pAMBL2 from (i) Pseudomonas aeruginosa (i) reveals a (i) (sub) that is a classification causing high-level carbapenem resistance. Journal of Antimicrobial Chemotherapy, 2015, 70, 3000-3003.	1.3	35
11	Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nature Communications, 2015, 6, 6845.	5.8	147
12	Here's to the Losers: Evolvable Residents Accelerate the Evolution of High-Fitness Invaders. American Naturalist, 2015, 186, 41-49.	1.0	2
13	Fitness Is Strongly Influenced by Rare Mutations of Large Effect in a Microbial Mutation Accumulation Experiment. Genetics, 2014, 197, 981-990.	1.2	59
14	Emergence of novel domains in proteins. BMC Evolutionary Biology, 2013, 13, 47.	3.2	36
15	Structure and Age Jointly Influence Rates of Protein Evolution. PLoS Computational Biology, 2012, 8, e1002542.	1.5	18
16	Sequence shortening in the rodent ancestor. Genome Research, 2012, 22, 478-485.	2.4	19
17	Role of Low-Complexity Sequences in the Formation of Novel Protein Coding Sequences. Molecular Biology and Evolution, 2012, 29, 883-886.	3.5	93
18	Partial Gene Duplication and the Formation of Novel Genes. , 2011, , .		4

#	Article	IF	CITATIONS
19	Lineage-Specific Variation in Intensity of Natural Selection in Mammals. Molecular Biology and Evolution, 2011, 28, 383-398.	3.5	38
20	Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Research, 2010, 20, 745-754.	2.4	88
21	Evolution of primate orphan proteins. Biochemical Society Transactions, 2009, 37, 778-782.	1.6	31
22	Origin of Primate Orphan Genes: A Comparative Genomics Approach. Molecular Biology and Evolution, 2008, 26, 603-612.	3.5	201
23	Accelerated Evolution of Genes of Recent Origin. , 2008, , 45-59.		4