Arjun Deb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7649556/publications.pdf

Version: 2024-02-01

19 papers	1,482 citations	11 h-index	940134 16 g-index
20	20	20	3032
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cardiomyocytes disrupt pyrimidine biosynthesis in nonmyocytes to regulate heart repair. Journal of Clinical Investigation, 2022, 132, .	3.9	16
2	Metabolic reprogramming and epigenetic changes of vital organs in SARS-CoV-2–induced systemic toxicity. JCl Insight, 2021, 6, .	2.3	57
3	PLucKing at Vascular Fibrosis. JACC Basic To Translational Science, 2021, 6, 284-286.	1.9	O
4	DDR2, a discoidin domain receptor, is a marker of periosteal osteoblast and osteoblast progenitors. Journal of Bone and Mineral Metabolism, 2020, 38, 670-677.	1.3	10
5	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	13.5	113
6	Cardiac fibroblast proliferation rates and collagen expression mature early and are unaltered with advancing age. JCI Insight, 2020, 5, .	2.3	14
7	Enhancement of \hat{l}^2 -catenin/T-cell factor 4 signaling causes susceptibility to cardiac arrhythmia by suppressing NaV1.5 expression in mice. Heart Rhythm, 2019, 16, 1720-1728.	0.3	11
8	How Stem Cells Turn into Bone and Fat. New England Journal of Medicine, 2019, 380, 2268-2270.	13.9	9
9	Endocardially Derived Macrophages Are Essential for Valvular Remodeling. Developmental Cell, 2019, 48, 617-630.e3.	3.1	61
10	WNT Signaling in Cardiac and Vascular Disease. Pharmacological Reviews, 2018, 70, 68-141.	7.1	260
11	Exogenous miR-29B Delivery Through a Hyaluronan-Based Injectable System Yields Functional Maintenance of the Infarcted Myocardium. Tissue Engineering - Part A, 2018, 24, 57-67.	1.6	37
12	Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner. Molecular Neurobiology, 2017, 54, 4584-4596.	1.9	14
13	Prognostic Significance of Left Ventricular Fibrosis in Patients With Congenital Bicuspid Aortic Valve. American Journal of Cardiology, 2017, 120, 1176-1179.	0.7	13
14	Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification. Cell Stem Cell, 2017, 20, 218-232.e5.	5.2	86
15	Skeletal and cardiac muscle pericytes: Functions and therapeutic potential., 2017, 171, 65-74.		80
16	The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nature Medicine, 2016, 22, 1131-1139.	15.2	331
17	Hypertrophic Preconditioning. Circulation, 2015, 131, 1468-1470.	1.6	0
18	Cell-cell interaction in the heart via Wnt/ \hat{A} -catenin pathway after cardiac injury. Cardiovascular Research, 2014, 102, 214-223.	1.8	86

Arjun Deb

#	Article	lF	CITATIONS
19	Mesenchymal–endothelial transition contributes to cardiac neovascularization. Nature, 2014, 514, 585-590.	13.7	284