Ming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7648967/publications.pdf Version: 2024-02-01

		126907	254184
43	3,418	33	43
papers	citations	h-index	g-index
	10		
43	43	43	3473
all docs	docs citations	times ranked	citing authors

MING WANG

#	Article	IF	CITATIONS
1	An Artificial Sensory Neuron with Tactile Perceptual Learning. Advanced Materials, 2018, 30, e1801291.	21.0	309
2	Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nature Electronics, 2020, 3, 563-570.	26.0	298
3	Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. Nature Communications, 2019, 10, 81.	12.8	204
4	Artificial Skin Perception. Advanced Materials, 2021, 33, e2003014.	21.0	203
5	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.	21.0	200
6	An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602.	12.8	166
7	Portable Foodâ€Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Advanced Materials, 2020, 32, e2004805.	21.0	131
8	An Artificial Somatic Reflex Arc. Advanced Materials, 2020, 32, e1905399.	21.0	126
9	Mechanically Interlocked Hydrogel–Elastomer Hybrids for On‣kin Electronics. Advanced Functional Materials, 2020, 30, 1909540.	14.9	120
10	Mediating Shortâ€Term Plasticity in an Artificial Memristive Synapse by the Orientation of Silica Mesopores. Advanced Materials, 2018, 30, e1706395.	21.0	100
11	Thermoelectric Seebeck effect in oxide-based resistive switching memory. Nature Communications, 2014, 5, 4598.	12.8	92
12	A Compliant Ionic Adhesive Electrode with Ultralow Bioelectronic Impedance. Advanced Materials, 2020, 32, e2003723.	21.0	86
13	Combinatorial Nano–Bio Interfaces. ACS Nano, 2018, 12, 5078-5084.	14.6	84
14	Fusing Stretchable Sensing Technology with Machine Learning for Human–Machine Interfaces. Advanced Functional Materials, 2021, 31, 2008807.	14.9	84
15	Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2019, 31, e1903130.	21.0	82
16	An on-demand plant-based actuator created using conformable electrodes. Nature Electronics, 2021, 4, 134-142.	26.0	81
17	An Onâ€Skin Electrode with Antiâ€Epidermalâ€Surfaceâ€Lipid Function Based on a Zwitterionic Polymer Brush. Advanced Materials, 2020, 32, e2001130.	21.0	74
18	A supertough electro-tendon based on spider silk composites. Nature Communications, 2020, 11, 1332.	12.8	73

Ming Wang

#	Article	IF	CITATIONS
19	Enhancing the Matrix Addressing of Flexible Sensory Arrays by a Highly Nonlinear Threshold Switch. Advanced Materials, 2018, 30, e1802516.	21.0	70
20	Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. Advanced Materials, 2017, 29, 1701780.	21.0	68
21	Nanomaterials Discovery and Design through Machine Learning. Small Methods, 2019, 3, 1900025.	8.6	67
22	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	21.0	64
23	Devising Materials Manufacturing Toward Labâ€ŧoâ€Fab Translation of Flexible Electronics. Advanced Materials, 2020, 32, e2001903.	21.0	60
24	Bipolar one diode–one resistor integration for high-density resistive memory applications. Nanoscale, 2013, 5, 4785.	5.6	50
25	A Heterogeneously Integrated Spiking Neuron Array for Multimodeâ€Fused Perception and Object Classification. Advanced Materials, 2022, 34, e2200481.	21.0	48
26	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nature Communications, 2020, 11, 2183.	12.8	47
27	Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning. ACS Nano, 2022, 16, 9691-9700.	14.6	47
28	Tactile Chemomechanical Transduction Based on an Elastic Microstructured Array to Enhance the Sensitivity of Portable Biosensors. Advanced Materials, 2019, 31, e1803883.	21.0	45
29	Aniline Tetramerâ€Graphene Oxide Composites for High Performance Supercapacitors. Advanced Energy Materials, 2014, 4, 1400781.	19.5	44
30	Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale, 2022, 14, 289-298.	5.6	43
31	Conduction mechanism of a TaO _x -based selector and its application in crossbar memory arrays. Nanoscale, 2015, 7, 4964-4970.	5.6	42
32	Tactile Near‧ensor Analogue Computing for Ultrafast Responsive Artificial Skin. Advanced Materials, 2022, 34, .	21.0	42
33	A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics. Advanced Materials, 2022, 34, e2101339.	21.0	35
34	An ultra-low hysteresis, self-healing and stretchable conductor based on dynamic disulfide covalent adaptable networks. Journal of Materials Chemistry A, 2022, 10, 2012-2020.	10.3	28
35	Investigation of One-Dimensional Thickness Scaling on \$ hbox{Cu/HfO}_{x}/hbox{Pt}\$ Resistive Switching Device Performance. IEEE Electron Device Letters, 2012, 33, 1556-1558.	3.9	24
36	Mechanically Durable Memristor Arrays Based on a Discrete Structure Design. Advanced Materials, 2022, 34, e2106212.	21.0	19

Ming Wang

#	Article	IF	CITATIONS
37	Mechanical Tolerance of Cascade Bioreactions via Adaptive Curvature Engineering for Epidermal Bioelectronics. Advanced Materials, 2020, 32, e2000991.	21.0	17
38	Progress in rectifying-based RRAM passive crossbar array. Science China Technological Sciences, 2011, 54, 811-818.	4.0	11
39	Carrier-transport-path-induced switching parameter fluctuation in oxide-based resistive switching memory. Materials Research Express, 2015, 2, 046304.	1.6	10
40	Assemblies and composites of gold nanostructures for functional devices. Aggregate, 2022, 3, e57.	9.9	10
41	Strainâ€Enabled Phase Transition of Periodic Metasurfaces. Advanced Materials, 2022, 34, e2102560.	21.0	7
42	Stretchable HfO2-Based Resistive Switching Memory Using the Wavy Structured Design. IEEE Electron Device Letters, 2020, , 1-1.	3.9	4
43	Flexible and Stretchable Memristive Arrays for in-Memory Computing. Frontiers in Nanotechnology, 2022, 3, .	4.8	3