
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7648779/publications.pdf Version: 2024-02-01

SHAQUINLIU

#	Article	IF	CITATIONS
1	A Probe into the Low-Temperature SCR Activity: NO Oxidative Activation to Nitrite-Intermediates. Catalysis Letters, 2022, 152, 1140-1144.	1.4	6
2	Effect of Dimethyl Formamide (DMF) on Vanadium Reloading Over V-Ti SCR Catalyst. Frontiers in Energy Research, 2022, 10, .	1.2	0
3	Enhanced performance of Nb2O5 decorated RuO2/Sn0.2Ti0.8O2 for selective catalytic oxidation of ammonia. Chemical Engineering Research and Design, 2022, 160, 948-957.	2.7	6
4	Dynamic Binuclear Cu ^{II} Sites in the Reduction Half-Cycle of Low-Temperature NH ₃ –SCR over Cu-CHA Catalysts. ACS Catalysis, 2022, 12, 5263-5274.	5.5	19
5	The relationship of morphology and catalytic performance of CeO2 catalysts for reducing nitrobenzene to azoxybenzene under the base-free condition. Chinese Chemical Letters, 2021, 32, 761-764.	4.8	5
6	Promotional effects of ruthenium oxide on catalytic oxidation of dichloromethane over the tungsten-titanium binary oxides catalyst. Proceedings of the Combustion Institute, 2021, 38, 6461-6471.	2.4	11
7	Mechanism and Enhancement of the Low-Temperature Selective Catalytic Reduction of NO <i>x</i> with NH ₃ by Bifunctional Catalytic Mixtures. Industrial & Engineering Chemistry Research, 2021, 60, 6446-6454.	1.8	11
8	On the Redox Mechanism of Lowâ€Temperature NH ₃ â€SCR over Cu HA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angewandte Chemie, 2021, 133, 7273-7280.	1.6	15
9	On the Redox Mechanism of Lowâ€Temperature NH ₃ â€SCR over Cu HA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angewandte Chemie - International Edition, 2021, 60, 7197-7204.	7.2	77
10	Effect of Gas Components and Particulate Matter on the Conversion of Nitric Oxide by Dielectric Barrier Discharge. Energy & Fuels, 2021, 35, 6711-6724.	2.5	7
11	Transient Kinetic Analysis of Low-Temperature NH ₃ -SCR over Cu-CHA Catalysts Reveals a Quadratic Dependence of Cu Reduction Rates on Cu ^{II} . ACS Catalysis, 2021, 11, 4821-4831.	5.5	41
12	The H2O Effect on Cu Speciation in Cu-CHA-Catalysts for NH3-SCR Probed by NH3 Titration. Catalysts, 2021, 11, 759.	1.6	9
13	Whole life cycle performance evolution of selective catalytic reduction catalyst in coal-fired power plants. Fuel Processing Technology, 2021, 219, 106866.	3.7	5
14	Highly efficient selective extraction of Mo with novel hydrophobic deep eutectic solvents. Journal of the Air and Waste Management Association, 2021, 71, 1492-1501.	0.9	5
15	Unraveling the Hydrolysis of Z ₂ Cu ²⁺ to ZCu ²⁺ (OH) ^{â^'} and Its Consequences for the Low-Temperature Selective Catalytic Reduction of NO on Cu-CHA Catalysts. ACS Catalysis, 2021, 11, 11616-11625.	5.5	37
16	Accelerated identification of high-performance catalysts for low-temperature NH ₃ -SCR by machine learning. Journal of Materials Chemistry A, 2021, 9, 23850-23859.	5.2	19
17	The Study on the Active Site Regulated RuOx/Sn0.2Ti0.8O2 Catalysts with Different Ru Precursors for the Catalytic Oxidation of Dichloromethane. Catalysts, 2021, 11, 1306.	1.6	0
18	Understanding the deposition and reaction mechanism of ammonium bisulfate on a vanadia SCR catalyst: A combined DFT and experimental study. Applied Catalysis B: Environmental, 2020, 260, 118168.	10.8	73

#	Article	IF	CITATIONS
19	KOH-activated hydrochar with engineered porosity as sustainable adsorbent for volatile organic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588, 124372.	2.3	36
20	Field test of SO3 removal in ultra-low emission coal-fired power plants. Environmental Science and Pollution Research, 2020, 27, 4746-4755.	2.7	17
21	Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption. Microporous and Mesoporous Materials, 2020, 295, 109940.	2.2	46
22	Different reactive behaviours of dichloromethane over anatase TiO2 supported RuO2 and V2O5. Catalysis Today, 2020, 355, 349-357.	2.2	23
23	An experimental and modelling study of the reactivity of adsorbed NH3 in the low temperature NH3-SCR reduction half-cycle over a Cu-CHA catalyst. Applied Catalysis B: Environmental, 2020, 279, 119397.	10.8	55
24	Synergy of vanadia and ceria in the reaction mechanism of low-temperature selective catalytic reduction of NOx by NH3. Journal of Catalysis, 2020, 391, 145-154.	3.1	30
25	Non-Thermal Plasma-Modified Ru-Sn-Ti Catalyst for Chlorinated Volatile Organic Compound Degradation. Catalysts, 2020, 10, 1456.	1.6	3
26	Engineering nano-ordered of Ni nanoparticles on KIT-6 for enhanced catalytic hydrogenation of nitrobenzene. Applied Surface Science, 2020, 525, 146382.	3.1	14
27	The poisoning effect of PbO on CeO2-MoO3/TiO2 catalyst for selective catalytic reduction of NO with NH3. Molecular Catalysis, 2020, 486, 110877.	1.0	10
28	Effect of multi-pollutant on the catalytic oxidation of dichloromethane over RuO2-WO3/Sn0.2Ti0.8O2 catalyst. Fuel, 2020, 278, 118207.	3.4	22
29	Investigation on optimal active layer thickness and pore size in dual-layer NH3-SCR monolith for low SO2 oxidation by numerical simulation. Fuel, 2020, 279, 118420.	3.4	14
30	Optimal Sensor and Relay Nodes Power Scheduling for Remote State Estimation with Energy Constraint. Sensors, 2020, 20, 1073.	2.1	2
31	Investigation of Arsenic Poisoned Selective Catalytic Reduction Catalyst Performance and Lifetime in Coal-Fired Power Plants. Energy & Fuels, 2020, 34, 12833-12840.	2.5	10
32	Synthesis of Zeolites from Coal Fly Ash for Removal of Harmful Gaseous Pollutants: A Review. Aerosol and Air Quality Research, 2020, 20, 1127-1144.	0.9	57
33	Promotion effect of KOH surface etching on sucrose-based hydrochar for acetone adsorption. Applied Surface Science, 2019, 496, 143617.	3.1	26
34	Evaporation and concentration of desulfurization wastewater with waste heat from coal-fired power plants. Environmental Science and Pollution Research, 2019, 26, 27494-27504.	2.7	20
35	Speciation of Cu Cations in Cu-CHA Catalysts for NH ₃ -SCR: Effects of SiO ₂ /AlO ₃ Ratio and Cu-Loading Investigated by Transient Response Methods. ACS Catalysis, 2019, 9, 8916-8927.	5.5	95
36	A perspective on the applications of energy-cyber-physical systems (e-CPSs) in ultra-low emission coal-fired power plants. Energy Procedia, 2019, 158, 6139-6144.	1.8	6

#	Article	IF	CITATIONS
37	Structure and crystal phase transition effect of Sn doping on anatase TiO2 for dichloromethane decomposition. Journal of Hazardous Materials, 2019, 371, 156-164.	6.5	57
38	New Insights into the Decomposition Behavior of NH ₄ HSO ₄ on the SiO ₂ -Decorated SCR Catalyst and Its Enhanced SO ₂ -Resistant Ability. ACS Omega, 2019, 4, 4927-4935.	1.6	18
39	Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts. Applied Surface Science, 2019, 479, 1132-1140.	3.1	70
40	Formation, transformation, measurement, and control of SO3 in coal-fired power plants. Fuel, 2019, 241, 327-346.	3.4	125
41	Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3. Molecular Catalysis, 2019, 462, 10-18.	1.0	54
42	Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst. Chemical Engineering Journal, 2019, 361, 874-884.	6.6	41
43	Experimental study on the evaporation and chlorine migration of desulfurization wastewater in flue gas. Environmental Science and Pollution Research, 2019, 26, 4791-4800.	2.7	37
44	Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. Journal of Hazardous Materials, 2019, 366, 240-249.	6.5	107
45	Atmospheric emission inventory of SO3 from coal-fired power plants in China in the period 2009–2014. Atmospheric Environment, 2019, 197, 14-21.	1.9	43
46	Promotional effect of doping Cu into cerium-titanium binary oxides catalyst for deep oxidation of gaseous dichloromethane. Chemosphere, 2019, 214, 553-562.	4.2	35
47	New insight into alkali resistance and low temperature activation on vanadia-titania catalysts for selective catalytic reduction of NO. Applied Surface Science, 2019, 466, 99-109.	3.1	38
48	Deactivation of Ce-Ti Oxide Catalyst by K3PO4 for the Selective Catalytic Reduction of NO with NH3. Aerosol and Air Quality Research, 2019, 19, 422-430.	0.9	4
49	Insights into the Effect of Adsorption–Desorption Cycles on SO2 Removal over an Activated Carbon. Aerosol and Air Quality Research, 2019, 19, 411-421.	0.9	9
50	Regeneration of Potassium Poisoned Catalysts for the Selective Catalytic Reduction of NO with NH3. Aerosol and Air Quality Research, 2019, 19, 649-656.	0.9	12
51	Experiments on Enhancing the Particle Charging Performance of an Electrostatic Precipitator. Aerosol and Air Quality Research, 2019, 19, 1411-1420.	0.9	8
52	An Investigation of SO3 Control Routes in Ultra-low Emission Coal-fired Power Plants. Aerosol and Air Quality Research, 2019, 9, 2908-2916.	0.9	13
53	Investigating the role of H4SiW12O40 in the acidity, oxidability and activity of H4SiW12O40-Fe2O3 catalysts for the selective catalytic reduction of NO with NH3. Molecular Catalysis, 2018, 448, 177-184.	1.0	18
54	A Comparative Study of the NH3-SCR Reactions over an Original and Sb-Modified V2O5–WO3/TiO2 Catalyst at Low Temperatures. Energies, 2018, 11, 3339.	1.6	5

#	Article	IF	CITATIONS
55	Synthesis and characterization of a single phase zeolite A using coal fly ash. RSC Advances, 2018, 8, 42200-42209.	1.7	36
56	Speciation and Thermal Stability of Mercury in Solid Products from Ultralow Emission Air Pollution Control Devices. Energy & amp; Fuels, 2018, 32, 12655-12664.	2.5	10
57	Balance and stability between particle collection and re-entrainment inawide temperature-range electrostatic precipitator. Powder Technology, 2018, 340, 543-552.	2.1	20
58	Insights into the role of particle space charge effects in particle precipitation processes in electrostatic precipitator. Powder Technology, 2018, 339, 606-614.	2.1	29
59	Removal and Emission Characteristics of Condensable Particulate Matter in an Ultralow Emission Power Plant. Energy & Fuels, 2018, 32, 10586-10594.	2.5	66
60	Current density distribution and optimization of the collection electrodes of a honeycomb wet electrostatic precipitator. RSC Advances, 2018, 8, 30701-30711.	1.7	17
61	Deactivation by HCl of CeO ₂ –MoO ₃ /TiO ₂ catalyst for selective catalytic reduction of NO with NH ₃ . RSC Advances, 2018, 8, 17677-17684.	1.7	4
62	Insight into the significant roles of microstructures and functional groups on carbonaceous surfaces for acetone adsorption. RSC Advances, 2018, 8, 21541-21550.	1.7	31
63	A combined wet electrostatic precipitator for efficiently eliminating fine particle penetration. Fuel Processing Technology, 2018, 180, 122-129.	3.7	57
64	Enhanced Activity of Nb-modified CeO2/TiO2 Catalyst for the Selective Catalytic Reduction of NO with NH3. Aerosol and Air Quality Research, 2018, 18, 2121-2130.	0.9	16
65	Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2017, 206, 449-460.	10.8	114
66	Isolation and characterization of two novel root-specific promoters in rice (Oryza sativa L.). Plant Science, 2013, 207, 37-44.	1.7	25
67	Low temperature selective catalytic reduction of NO and NO2 with NH3 over activated carbon-supported vanadium oxide catalyst. Catalysis Today, 2011, 175, 164-170.	2.2	29
68	Adsorption and reduction of NO2 over activated carbon at low temperature. Fuel Processing Technology, 2011, 92, 139-146.	3.7	63
69	Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO. Journal of Hazardous Materials, 2011, 188, 58-66.	6.5	90