Tapas Kuila

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7648661/tapas-kuila-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

11,467 167 48 105 h-index g-index citations papers 6.61 12,950 7.3 173 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
167	Conducting scaffold supported defect rich 3D rGO-CNT/MoS2 nanostructure for efficient HER electrocatalyst at variable pH. <i>Composites Part B: Engineering</i> , 2022 , 230, 109489	10	2
166	Minimal lanthanum-doping triggered enhancement in bifunctional water splitting activity of molybdenum oxide/sulfide heterostructure through structural evolution. <i>Chemical Engineering Journal</i> , 2022 , 428, 131131	14.7	О
165	Synthesis of nickel-tin oxide/nitrogen-doped reduced graphene oxide composite for asymmetric supercapacitor device. <i>Chemical Engineering Journal</i> , 2022 , 443, 136453	14.7	3
164	Effect of redox additive in aqueous electrolyte on the high specific capacitance of cation incorporated MnCo2O4@Ni(OH)2 electrode materials for flexible symmetric supercapacitor. <i>Composites Part B: Engineering</i> , 2021 , 215, 108755	10	8
163	Synthesis of iron pyrite with efficient bifunctional electrocatalytic activity towards overall water splitting in alkaline medium. <i>Bulletin of Materials Science</i> , 2021 , 44, 1	1.7	2
162	Influence of Transition Metals (Cu and Co) on the Carbon-Coated Nickel Sulfide Used as Positive Electrode Material in Hybrid Supercapacitor Device. <i>Journal of Composites Science</i> , 2021 , 5, 180	3	3
161	An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts. <i>Journal of Energy Chemistry</i> , 2021 , 59, 160-190	12	18
160	Optimization of specific capacitance and water splitting efficiency of N-enriched carbon by incorporating oxides of transition metals via an ancient chemical technique. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 880, 114929	4.1	1
159	Polymer nanocomposites for energy-related applications 2021 , 215-248		
158	The structure activity correlation of bifunctional MnO2 polymorphoric and MoS2-based heterostructures: a highly efficient, robust electrochemical water oxidation and reduction reaction catalyst in alkaline pH. Sustainable Energy and Fuels, 2021, 5, 1148-1157	5.8	5
157	Activation Strategy of MoS as HER Electrocatalyst through Doping-Induced Lattice Strain, Band Gap Engineering, and Active Crystal Plane Design. <i>ACS Applied Materials & Design & Desig</i>	9.5	26
156	Enhancement of the Electrochemical Performance of a Novel Binder-Free Ni3S2@Co3S4/Mn3O4-RGO Heterostructure through Crystallinity and Band Gap Modification for Flexible Supercapacitors. <i>Energy & Documents</i> 2021, 35, 13389-13401	4.1	3
155	A novel strategy to achieve 2V symmetric supercapacitor using B, N doped rGO as an electrode material in water in salt based hydrous electrolyte [Electrochimica Acta, 2021, 388, 138571]	6.7	1
154	Tailoring the bifunctional electrocatalytic activity of electrodeposited molybdenum sulfide/iron oxide heterostructure to achieve excellent overall water splitting. <i>Chemical Engineering Journal</i> , 2021 , 417, 129333	14.7	8
153	Investigation of electrochemical charge storage in nickel-cobalt-selenide/reduced graphene oxide composite electrode and its hybrid supercapacitor device. <i>Journal of Alloys and Compounds</i> , 2020 , 835, 155432	5.7	31
152	Colorimetric/naked eye detection of arsenic ions in aqueous medium by mango flower extract: A facile and novel approach. <i>Applied Surface Science</i> , 2020 , 513, 145760	6.7	6
151	Alteration in capacitive performance of Sn-decorated MnO2 with different crystal structure: An investigation towards the development of high-performance supercapacitor electrode materials. <i>Journal of Energy Storage</i> , 2020 , 28, 101281	7.8	15

150 Manganese (IV) Oxide-Based Supercapacitors **2020**,

149	Doping-Assisted Phase Changing Effect on MoS2 Towards Hydrogen Evolution Reaction in Acidic and Alkaline pH. <i>ChemElectroChem</i> , 2020 , 7, 336-346	4.3	15
148	Alteration in electrocatalytic water splitting activity of reduced graphene oxide through simultaneous and individual doping of Lewis acid/base center. <i>Electrochimica Acta</i> , 2020 , 362, 137146	6.7	4
147	Understanding the Synergistic Effect in Oxygen Evolution Reaction Catalysis from Chemical Kinetics Point of View: An Iron Oxide/Nickel Oxide Case Study. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 116514	3.9	6
146	Keratin-derived functional carbon with superior charge storage and transport for high-performance supercapacitors. <i>Carbon</i> , 2020 , 168, 419-438	10.4	44
145	FeNiSx@MoS2 Heterostructure: A Bioinspired Nonprecious Electrocatalyst for the Hydrogen Evolution Reaction in Acidic and Basic Media. <i>ChemElectroChem</i> , 2020 , 7, 3324-3335	4.3	7
144	Investigation of Electrochemical Charge Storage Efficiency of NiCo2Se4/RGO Composites Derived at Varied Duration and Its Asymmetric Supercapacitor Device. <i>Energy & Device and State Control</i> 2016, 34, 13056-1306	6 6 .1	23
143	Development of carbon coated NiS2 as positive electrode material for high performance asymmetric supercapacitor. <i>Composites Part B: Engineering</i> , 2019 , 177, 107373	10	34
142	Optimization of Chemi-adsorption, EDLC, and Redox Capacitance Through Electro-precipitation Synthesis of Fe3O4/NiO@rGO/h-BN for the Development of Hybrid Supercapacitor. <i>ChemistrySelect</i> , 2019 , 4, 589-599	1.8	4
141	Nanolubricants dispersed with graphene and its derivatives: an assessment and review of the tribological performance. <i>Nanoscale</i> , 2019 , 11, 3458-3483	7.7	68
140	Anticorrosion Properties of Epoxy Composite Coating Reinforced by Molybdate-Intercalated Functionalized Layered Double Hydroxide. <i>Journal of Composites Science</i> , 2019 , 3, 11	3	30
139	Bioinspired silver nanoparticles/reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol, organic dyes and act as energy storage electrode material. <i>Composites Part B: Engineering</i> , 2019 , 173, 106924	10	31
138	Effect of Ion Diffusion in Cobalt Molybdenum Bimetallic Sulfide toward Electrocatalytic Water Splitting. <i>ACS Applied Materials & District Materials</i> (2019), 11, 21634-21644	9.5	25
137	Effect of the Solvent Ratio (Ethylene Glycol/Water) on the Preparation of an Iron Sulfide Electrocatalyst and Its Activity towards Overall Water Splitting. <i>ChemElectroChem</i> , 2019 , 6, 3199-3208	4.3	9
136	Direct observation of micro delamination in graphene oxide incorporated carbon fiber/epoxy composite via in-situ tensile test. <i>Composites Science and Technology</i> , 2019 , 177, 57-65	8.6	14
135	Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 432-442	21.8	104
134	Electrochemical Detection of HIDIUsing Copper Oxide-Reduced Graphene Oxide Heterostructure. Journal of Nanoscience and Nanotechnology, 2019 , 19, 5295-5302	1.3	10
133	Synergistic effect of Fe3O4 anchored N-doped rGO hybrid on mechanical, thermal and electromagnetic shielding properties of epoxy composites. <i>Composites Part B: Engineering</i> , 2019 , 166, 371-381	10	34

132	Experimental and numerical investigation on the mechanical characteristics of polyethylenimine functionalized graphene oxide incorporated woven carbon fibre/epoxy composites. <i>Composites Part B: Engineering</i> , 2019 , 156, 240-251	10	22
131	Synthesis of Tri-functional Core-shell CuO@carbon Quantum Dots@carbon Hollow Nanospheres Heterostructure for Non-enzymatic H2O2 Sensing and Overall Water Splitting Applications. <i>Electroanalysis</i> , 2019 , 31, 2120-2129	3	4
130	Binder-Free Growth of Nickel-Doped Iron Sulfide on Nickel Foam via Electrochemical Deposition for Electrocatalytic Water Splitting. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18015-18026	8.3	36
129	Nanostructured Carbon-Based Electrodes for Supercapacitor Applications 2019 , 467-520		
128	Analytical and experimental investigation on magnetorheological behavior of CoFe2O4-rGO-incorporated epoxy fluid composites. <i>Advanced Composites and Hybrid Materials</i> , 2019 , 2, 266-278	8.7	19
127	Effect of Fe3O4-Decorated N-Doped Reduced Graphene Oxide Nanohybrid on the Anticorrosion Performance of Epoxy Composite Coating. <i>ChemistrySelect</i> , 2019 , 4, 13446-13454	1.8	7
126	A SILAR method for the fabrication of layer-by-layer assembled Cu2O-reduced graphene oxide composite for non-enzymatic detection of hydrogen peroxide. <i>Materials Research Express</i> , 2019 , 6, 0250	o457	2
125	Tribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricants. <i>Tribology International</i> , 2019 , 131, 605-619	4.9	38
124	Hierarchical Cobalt Sulfide/Molybdenum Sulfide Heterostructure as Bifunctional Electrocatalyst towards Overall Water Splitting. <i>ChemElectroChem</i> , 2019 , 6, 430-438	4.3	29
123	Modified electrochemical charge storage properties of h-BN/rGO superlattice through the transition from n to p type semiconductor by fluorine doping. <i>Chemical Engineering Journal</i> , 2018 , 339, 334-345	14.7	15
122	Investigation of the mechanical and thermal properties of l-glutathione modified graphene/epoxy composites. <i>Composites Part B: Engineering</i> , 2018 , 143, 105-112	10	25
121	Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite. <i>Journal of Materials Engineering and Performance</i> , 2018 , 27, 1138-1147	1.6	27
120	Novel synthesis of a Cu2Ographene nanoplatelet composite through a two-step electrodeposition method for selective detection of hydrogen peroxide. <i>New Journal of Chemistry</i> , 2018 , 42, 3574-3581	3.6	15
119	Interface engineering for the improvement of mechanical and thermal properties of covalent functionalized graphene/epoxy composites. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 46124	2.9	28
118	Controlled electrodeposition of iron oxide/nickel oxide@Ni for the investigation of the effects of stoichiometry and particle size on energy storage and water splitting applications. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9657-9664	13	12
117	Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite. <i>IOP Conference Series: Materials Science and Engineering</i> , 2018 , 338, 012015	0.4	2
116	A review on the heterostructure nanomaterials for supercapacitor application. <i>Journal of Energy Storage</i> , 2018 , 17, 181-202	7.8	71
115	Investigation of mechanical and thermal properties of the cetyltrimethylammonium bromide functionalized molybdenum disulfide (MoS2)/epoxy composites. <i>Polymer Bulletin</i> , 2018 , 75, 327-343	2.4	10

114	One Pot Synthesis of Cu2O-RGO Composite Using Mango Bark Extract for Supercapacitor Application. <i>Springer Proceedings in Energy</i> , 2018 , 81-88	0.2	
113	Cobalt Sulfide/Nickel Sulfide Heterostructure Directly Grown on Nickel Foam: An Efficient and Durable Electrocatalyst for Overall Water Splitting Application. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 27712-27722	9.5	160
112	Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite. <i>Crystals</i> , 2018 , 8, 111	2.3	9
111	Exploration of Mechanical and Thermal Properties of CTAB-Modified MoS2/LLDPE Composites Prepared by Melt Mixing. <i>Journal of Composites Science</i> , 2018 , 2, 37	3	3
110	Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite. <i>Composites Part B: Engineering</i> , 2018 , 149, 22-30	10	38
109	Rheological, Mechanical, and Thermal Properties of Silane Grafted Layered Double Hydroxide/Epoxy Composites. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 8729-8739	3.9	11
108	Recent trends in the graphene-based sensors for the detection of hydrogen peroxide. <i>AIMS Materials Science</i> , 2018 , 5, 422-466	1.9	11
107	Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. <i>Materials Chemistry and Physics</i> , 2017 , 190, 153-165	4.4	28
106	Electrochemical functionalization and in-situ deposition of the SAA@rGO/h-BN@Ni electrode for supercapacitor applications. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 52, 321-330	6.3	12
105	Morphology controlled synthesis of MnCO3RGO materials and their supercapacitor applications. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12863-12872	13	30
104	High Performing Hybrid Nanomaterials for Supercapacitor Applications 2017, 79-145		2
103	High Performance Hybrid Filler Reinforced Epoxy Nanocomposites 2017 , 371-422		1
102	A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application. <i>Journal of Power Sources</i> , 2017 , 340, 380-392	8.9	43
101	Investigation of the surface plasmon polariton and electrochemical properties of covalent and non-covalent functionalized reduced graphene oxide. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 285	88-28	5 9 5
100	Surface modification of reduced graphene oxide through successive ionic layer adsorption and reaction method for redox dominant supercapacitor electrodes. <i>Chemical Engineering Journal</i> , 2017 , 330, 914-925	14.7	7
99	Functionalized reduced graphene oxide/epoxy composites with enhanced mechanical properties and thermal stability. <i>Polymer Testing</i> , 2017 , 63, 1-11	4.5	54
98	Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. <i>Carbon</i> , 2017 , 122, 247-257	10.4	100
97	Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application. <i>Chemical Engineering Journal</i> , 2017 , 308, 1174-	1 18 7	70

96	Graphene Composites 2016 , 63-111		1
95	Spinel-Structured NiCo2O4 Nanorods as Energy Efficient Electrode for Supercapacitor and Lithium Ion Battery Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 9761-9770	1.3	10
94	Effect of high molecular weight polyethyleneimine functionalized graphene oxide coated polyethylene terephthalate film on the hydrogen gas barrier properties. <i>Composites Part B: Engineering</i> , 2016 , 106, 316-323	10	33
93	Superior performance of asymmetric supercapacitor based on reduced graphene oxidefinanganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials. <i>Journal of Power Sources</i> , 2016 , 303, 222-233	8.9	57
92	Band gap modified boron doped NiO/Fe3O4 nanostructure as the positive electrode for high energy asymmetric supercapacitors. <i>RSC Advances</i> , 2016 , 6, 1380-1387	3.7	44
91	One pot synthesis of Cu2O/RGO composite using mango bark extract and exploration of its electrochemical properties. <i>Electrochimica Acta</i> , 2016 , 193, 104-115	6.7	37
90	In-situ hydrothermal synthesis of MnO2/NiO@Ni hetero structure electrode for hydrogen evolution reaction and high energy asymmetric supercapacitor applications. <i>Journal of Energy Storage</i> , 2016 , 6, 22-31	7.8	43
89	Growth of Nito binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2188-2197	13	80
88	Effects of the reduction of PAni-coated oxidized multiwall carbon nanotubes on the positive temperature coefficient behaviors of their carbon black/high density polyethylene composites. <i>Polymer Testing</i> , 2016 , 50, 83-93	4.5	12
87	Electromagnetic interference shielding and thermal properties of non-covalently functionalized reduced graphene oxide/epoxy composites. <i>AIMS Materials Science</i> , 2016 , 4, 61-74	1.9	23
86	Enhanced Mechanical Properties of Functionalized Graphene Oxide/linear Low Density Polyethylene Composites Prepared by Melt Mixing. <i>Composites Research</i> , 2016 , 29, 173-178		2
85	Development of Cobalt Sulfide-graphene Composite for Supercapacitor Applications. <i>Composites Research</i> , 2016 , 29, 167-172		
84	Self Charging Sulfanilic Acid Azocromotrop/Reduced Graphene Oxide Decorated Nickel Oxide/Iron Oxide Solar Supercapacitor for Energy Storage Application. <i>Composites Research</i> , 2016 , 29, 179-185		
83	Effect of Dodecyal Amine Functionalized Graphene on the Mechanical and Thermal Properties of Epoxy-Based Composites. <i>Polymer Engineering and Science</i> , 2016 , 56, 1221-1228	2.3	22
82	Efficient Access of Voltammetric Charge in Hybrid Supercapacitor Configured with Potassium Incorporated Nanographitic Structure Derived from Cotton (Gossypium arboreum) as Negative and Ni(OH)2/rGO Composite as Positive Electrode. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	10
81	2016 , 55, 11074-11084 Facile preparation of flower-like NiCo 2 O 4 /three dimensional graphene foam hybrid for high performance supercapacitor electrodes. <i>Carbon</i> , 2015 , 89, 328-339	10.4	120
80	In situ preparation of a SAC-RGO@Ni electrode by electrochemical functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application in asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19461-19468	13	17
79	Electrochemical performance of reduced graphene oxide surface-modified with 9-anthracene carboxylic acid. <i>RSC Advances</i> , 2015 , 5, 6443-6451	3.7	27

78	N-doped carbon layer coated thermally exfoliated graphene and its capacitive behavior in redox active electrolyte. <i>Carbon</i> , 2015 , 85, 60-71	10.4	43
77	Investigation of the capacitive performance of tobacco solution reduced graphene oxide. <i>Materials Chemistry and Physics</i> , 2015 , 151, 72-80	4.4	10
76	Graphene/Conjugated Polymer Nanocomposites for Optoelectronic and Biological Applications 2015 , 229-279		1
75	Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7323-73	3 3 7	103
74	Preparation of reduced graphene oxide-NiFe 2 O 4 nanocomposites for the electrocatalytic oxidation of hydrazine. <i>Composites Part B: Engineering</i> , 2015 , 79, 649-659	10	62
73	Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device. <i>ACS Applied Materials & Devices</i> , 2015, 7, 14211-2	2 ^{9.5}	100
72	Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 4820-68	7.7	152
71	Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites. <i>Nanotechnology</i> , 2015 , 26, 075402	3.4	27
70	Hydrothermal synthesis of Fe3O4/RGO composites and investigation of electrochemical performances for energy storage applications. <i>RSC Advances</i> , 2014 , 4, 44777-44785	3.7	48
69	Enhanced mechanical properties of a multiwall carbon nanotube attached pre-stitched graphene oxide filled linear low density polyethylene composite. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2681-2	2689	38
68	Effects of surface-modified silica nanoparticles attached graphene oxide using isocyanate-terminated flexible polymer chains on the mechanical properties of epoxy composites. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10557-10567	13	63
67	7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material. <i>Nanoscale</i> , 2014 , 6, 4864-73	7.7	37
66	Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 7618-26	3.6	79
65	Bio-reduction of graphene oxide using drained water from soaked mung beans (Phaseolus aureus L.) and its application as energy storage electrode material. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2014 , 186, 33-40	3.1	80
64	Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. <i>Carbon</i> , 2014 , 69, 66-78	10.4	139
63	Effects of acid vapour mediated oxidization on the electrochemical performance of thermally exfoliated graphene. <i>Carbon</i> , 2014 , 74, 195-206	10.4	23
62	Graphene and its Nanocomposites for Gas Sensing Applications 2014 , 467-500		3
61	Polymer-Layered Silicate Nanocomposite Membranes for Fuel Cell Application 2014 , 481-509		Ο

60	Recent advances in application of biosensors in tissue engineering. <i>BioMed Research International</i> , 2014 , 2014, 307519	3	94
59	Graphene-Based Materials for Energy Storage Applications. World Scientific Series on Carbon Nanoscience, 2014 , 1-49	0.5	
58	Enhanced properties of aryl diazonium salt-functionalized graphene/poly(vinyl alcohol) composites. <i>Chemical Engineering Journal</i> , 2014 , 245, 311-322	14.7	40
57	Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. <i>Composites Science and Technology</i> , 2013 , 79, 115-125	8.6	281
56	Effects of covalent surface modifications on the electrical and electrochemical properties of graphene using sodium 4-aminoazobenzene-4?-sulfonate. <i>Carbon</i> , 2013 , 54, 310-322	10.4	54
55	Efficient reduction of graphene oxide using Tin-powder and its electrochemical performances for use as an energy storage electrode material. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11320	13	15
54	Effects of reduction and polystyrene sulfate functionalization on the capacitive behaviour of thermally exfoliated graphene. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5892	13	32
53	Effects of processing conditions of poly(methylmethacrylate) encapsulated liquid curing agent on the properties of self-healing composites. <i>Composites Part B: Engineering</i> , 2013 , 49, 6-15	10	105
52	Surface Modification of Graphene 2013 , 35-86		2
51	Preparation of sulfonated poly(ether日therdetone) functionalized ternary graphene/AuNPs/chitosan nanocomposite for efficient glucose biosensor. <i>Process Biochemistry</i> , 2013 , 48, 1724-1735	4.8	46
50	One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials. <i>Nanotechnology</i> , 2013 , 24, 365706	3.4	30
49	Effects of sodium hydroxide on the yield and electrochemical performance of sulfonated poly(ether-ether-ketone) functionalized graphene. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9294	13	31
48	In situ synthesis of the reduced graphene oxidepolyethyleneimine composite and its gas barrier properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3739	13	192
47	Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. <i>Nanoscale</i> , 2013 , 5, 52-71	7.7	392
46	Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1349-1358	13	178
45	Effects of hybrid carbon fillers of polymer composite bipolar plates on the performance of direct methanol fuel cells. <i>Composites Part B: Engineering</i> , 2013 , 51, 98-105	10	31
44	Electrostatically assembled layer-by-layer composites containing graphene oxide for enhanced hydrogen gas barrier application. <i>Composites Science and Technology</i> , 2013 , 89, 167-174	8.6	45
43	Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene. <i>Journal of Alloys and Compounds</i> , 2013 , 562, 134-142	5.7	72

(2012-2013)

42	Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications. <i>Composites Part B: Engineering</i> , 2013 , 44, 533-539	10	58
41	Tin-Powder Mediated Facile Route for the Reduction of Graphene Oxide. <i>Advanced Materials Research</i> , 2013 , 747, 238-241	0.5	
40	Electrochemically Preparation of Functionalized Graphene Using Sodium Dodecyl Benzene Sulfonate (SDBS). <i>Advanced Materials Research</i> , 2013 , 747, 246-249	0.5	8
39	Effect of peptizer on the properties of Nafionlaponite clay nanocomposite membranes for polymer electrolyte membrane fuel cells. <i>Journal of Membrane Science</i> , 2012 , 389, 316-323	9.6	23
38	Chemical functionalization of graphene and its applications. <i>Progress in Materials Science</i> , 2012 , 57, 106	514121205	5 1351
37	Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. <i>Polymer Testing</i> , 2012 , 31, 31-38	4.5	164
36	Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. <i>Polymer Testing</i> , 2012 , 31, 282-289	4.5	102
35	Material selection windows for hybrid carbons/poly(phenylene sulfide) composite for bipolar plates of fuel cell. <i>Polymer Testing</i> , 2012 , 31, 537-545	4.5	29
34	Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. <i>Progress in Polymer Science</i> , 2012 , 37, 842-869	29.6	161
33	Effect of reactive poly(ethylene glycol) flexible chains on curing kinetics and impact properties of bisphenol-a glycidyl ether epoxy. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 2325-2332	2.9	8
32	Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24403		79
31	Protic ionic liquid-functionalized mesoporous silica-based hybrid membranes for proton exchange membrane fuel cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24366		43
30	Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9696		191
29	Facile method for the preparation of water dispersible graphene using sulfonated poly(ether-ether-ketone) and its application as energy storage materials. <i>Langmuir</i> , 2012 , 28, 9825-33	4	76
28	Carbon-based nanostructured materials and their composites as supercapacitor electrodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 767-784		579
27	A green approach for the reduction of graphene oxide by wild carrot root. <i>Carbon</i> , 2012 , 50, 914-921	10.4	286
26	Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast. <i>Chemical Engineering Journal</i> , 2012 , 183, 526-533	14.7	210
25	Tunable electrical conductivity and dielectric properties of triglycine sulfate-polypyrrole composite. Chemical Engineering Journal, 2012, 187, 334-340	14.7	14

24	Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. <i>Nanotechnology</i> , 2011 , 22, 405603	3.4	43
23	Preparation of water-dispersible graphene by facile surface modification of graphite oxide. <i>Nanotechnology</i> , 2011 , 22, 305710	3.4	82
22	Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. <i>Nanotechnology</i> , 2011 , 22, 295202	3.4	132
21	Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. <i>Nanotechnology</i> , 2011 , 22, 369502	3.4	19
20	Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2011 , 42, 1856-1861	8.4	140
19	Recent advances in graphene-based biosensors. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 4637-48	11.8	1025
18	Lipase-catalyzed synthesis and characterization of biodegradable polyester containing l-malic acid unit in solvent system. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 1114-1120	2.9	27
17	Preparation and Characterization of High Performance LLDPE/Graphene Nanocomposites. <i>Advanced Materials Research</i> , 2011 , 410, 152-155	0.5	1
16	Efficient synthesis of graphene sheets using pyrrole as a reducing agent. <i>Carbon</i> , 2011 , 49, 3497-3502	10.4	175
15	Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. <i>Carbon</i> , 2011 , 49, 1033-1037	10.4	282
14	Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. <i>Progress in Polymer Science</i> , 2011 , 36, 813-843	29.6	669
13	Preparation and Characterization of Functionalized Graphene/Linear Low Density Polyethylene Nanocomposites. <i>Advanced Materials Research</i> , 2010 , 123-125, 173-176	0.5	
12	In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. <i>Polymer</i> , 2010 , 51, 5921-5928	3.9	417
11	Rubber/LDH nanocomposites by solution blending. <i>Journal of Applied Polymer Science</i> , 2009 , 111, 635-6	54:1 9	34
10	Synthesis and characterization of polyurethane/Mg-Al layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 2009 , 114, 2691-2699	2.9	56
9	Ethylene vinyl acetate/Mg-Al LDH nanocomposites by solution blending. <i>Polymer Composites</i> , 2009 , 30, 497-502	3	16
8	Ethylene vinyl acetate/ethylene propylene diene terpolymer-blend-layered double hydroxide nanocomposites. <i>Polymer Engineering and Science</i> , 2009 , 49, 585-591	2.3	12
7	Effect of layered silicate on EPDM/EVA blend nanocomposite: Dynamic mechanical, thermal, and swelling properties. <i>Polymer Composites</i> , 2008 , 29, 443-450	3	28

LIST OF PUBLICATIONS

6	Effect of vinyl acetate content on the mechanical and thermal properties of ethylene vinyl acetate/MgAl layered double hydroxide nanocomposites. <i>Journal of Applied Polymer Science</i> , 2008 , 108, 1329-1335	2.9	36
5	Thermoplastic polyolefin based polymer Iblend-layered double hydroxide nanocomposites. <i>Composites Science and Technology</i> , 2008 , 68, 3234-3239	8.6	60
4	Synthesis and characterization of ethylene vinyl acetate/MgAl layered double hydroxide nanocomposites. <i>Journal of Applied Polymer Science</i> , 2007 , 104, 1845-1851	2.9	36
3	Enhancing the ionic conductivity of PEO based plasticized composite polymer electrolyte by LaMnO3 nanofiller. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2007 , 137, 217-224	3.1	54
2	Progress in theoretical and experimental investigation on seawater electrolysis: opportunities and challenges. <i>Sustainable Energy and Fuels</i> ,	5.8	3
	Precursor-Dependent Formation of Iron Pyrite and its Application as Supercapacitor Electrode		