Megan K Bartlett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7648437/publications.pdf

Version: 2024-02-01

30 papers

3,125 citations

³⁶¹³⁸⁸
20
h-index

477281 29 g-index

30 all docs

30 docs citations

30 times ranked

4195 citing authors

#	Article	IF	CITATIONS
1	The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global metaâ€analysis. Ecology Letters, 2012, 15, 393-405.	6.4	674
2	Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5024-5029.	7.1	554
3	The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13098-13103.	7.1	362
4	Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecology Letters, 2014, 17, 1580-1590.	6.4	234
5	Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration. Plant Physiology, 2017, 173, 1197-1210.	4.8	195
6	Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point. Methods in Ecology and Evolution, 2012, 3, 880-888.	5.2	183
7	Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 2015, 29, 1268-1277.	3.6	151
8	A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nature Communications, 2019, 10, 3398.	12.8	118
9	Does climate directly influence <scp>NPP</scp> globally?. Global Change Biology, 2016, 22, 12-24.	9.5	98
10	Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity. Global Change Biology, 2019, 25, 3395-3405.	9.5	53
11	The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in <i>Arabidopsis thaliana</i> . Plant Physiology, 2018, 178, 1584-1601.	4.8	50
12	Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species. Botany, 2011, 89, 491-497.	1.0	47
13	Predicting shifts in the functional composition of tropical forests under increased drought and <scp>CO</scp> ₂ from tradeâ€offs among plant hydraulic traits. Ecology Letters, 2019, 22, 67-77.	6.4	43
14	Predicting Stomatal Closure and Turgor Loss in Woody Plants Using Predawn and Midday Water Potential. Plant Physiology, 2020, 184, 881-894.	4.8	39
15	An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Functional Ecology, 2019, 33, 712-734.	3.6	37
16	Osmotic and hydraulic adjustment of mangrove saplings to extreme salinity. Tree Physiology, 2016, 36, 1562-1572.	3.1	36
17	Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest. Biology Letters, 2017, 13, 20160819.	2.3	32
18	Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. Journal of Ecology, 2020, 108, 1030-1045.	4.0	29

#	Article	IF	CITATIONS
19	Causes of variation in leaf-level drought tolerance within an Amazonian forest. The Journal of Plant Hydraulics, 0, 3, e004.	1.0	29
20	Dryâ€season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest. Functional Ecology, 2018, 32, 2285-2297.	3.6	22
21	Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 2019, 100, e02591.	3.2	22
22	Evolution of leaf structure and drought tolerance in species of Californian $\langle i \rangle$ Ceanothus $\langle i \rangle$. American Journal of Botany, 2018, 105, 1672-1687.	1.7	20
23	Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2. Oecologia, 2012, 169, 915-925.	2.0	19
24	Seedling response to water stress in valley oak (<i>Quercus lobata</i>) is shaped by different gene networks across populations. Molecular Ecology, 2019, 28, 5248-5264.	3.9	19
25	Correlated evolution in traits influencing leaf water balance in Dendrobium (Orchidaceae). Plant Ecology, 2014, 215, 1255-1267.	1.6	16
26	Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars. Journal of Experimental Botany, 2021, 72, 1995-2009.	4.8	15
27	Root pressure–volume curve traits capture rootstock drought tolerance. Annals of Botany, 2022, 129, 389-402.	2.9	13
28	Covariation between leaf hydraulics and biomechanics is driven by leaf density in Mediterranean shrubs. Trees - Structure and Function, 2019, 33, 507-519.	1.9	9
29	Coordination Between Phloem Loading and Structure Maintains Carbon Transport Under Drought. Frontiers in Plant Science, 2022, 13, 787837.	3.6	5
30	Cycads defy expectations for the coordination between drought and mechanical resistance. A commentary on: â€~Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species'. Annals of Botany, 2022, , .	2.9	1