Sidorenko Sergey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7648414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Defects in Ni/Cu/Cr/Si Multilayer Nanosystem Induced by Thermal and Ion Influences. Metallofizika I Noveishie Tekhnologii, 2021, 43, 183-208.	0.2	1
2	Structural phase transformations in annealed Pt/Mn/Fe trilayers. Journal of Physics Condensed Matter, 2020, 32, 365404.	0.7	0
3	Effect of barrier underlayer on diffusion and phase composition of Ni/Cu thin films under annealing. , 2020, , .		3
4	Influence of Hydrogen Annealing on Ordering in FePd Films with Ag Underlayer. Springer Proceedings in Physics, 2020, , 367-377.	0.1	0
5	Antibacterial Treatment of the Titanium with Ar\$^+\$ Ions. Metallofizika I Noveishie Tekhnologii, 2020, 42, 215-236.	0.2	1
6	Structure Transformation of the Fe Sub-Surface Layers Induced by the Presence of Graphene. Metallofizika I Noveishie Tekhnologii, 2020, 42, 669-694.	0.2	0
7	Adsorption Capacity of Metallic Thin Films after Bombarding by Low-Energy Ar\$^{+}\$ Ions. Metallofizika I Noveishie Tekhnologii, 2020, 42, 621-630.	0.2	1
8	Effects of Surface Passivation of Fe-Based Amorphous Compositions as a Result of Bombardment by Low-Energy Ar\$^+\$ Ions. Metallofizika I Noveishie Tekhnologii, 2020, 42, 963-976.	0.2	0
9	Formation of Hard Magnetic FePt Based Films on Amorphous Silicon Oxide and Sapphire Substrates by RTA. , 2019, , .		Ο
10	Phase transformations in Pt/Fe bilayers during post annealing probed by resistometry. Journal of Physics Condensed Matter, 2019, 31, 285401.	0.7	1
11	Oxidation and reduction processes in Ni/Cu/Cr/Si(100) thin films under low-energy ion irradiation. Materials Research Express, 2019, 6, 126431.	0.8	5
12	Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy. Surface and Coatings Technology, 2019, 361, 413-424.	2.2	28
13	Structural and Phase Transformations in Nanoscale Cu/Cr System under Heat and Ion Actions. Metallofizika I Noveishie Tekhnologii, 2019, 41, 1-11.	0.2	2
14	Influence of an Atmosphere of Annealing on Magnetic Properties of Nanosize Films of FePt Alloy. Metallofizika I Noveishie Tekhnologii, 2019, 41, 157-171.	0.2	1
15	Synchrotron analysis of structure transformations in V and V/Ag thin films. Vacuum, 2018, 150, 186-195.	1.6	4
16	Influence of microstructural features and deformation-induced martensite on hardening of stainless steel by cryogenic ultrasonic impact treatment. Surface and Coatings Technology, 2018, 343, 57-68.	2.2	52
17	Diffusion of Au and its influence on the coercivity of [FePt/Au/FePt] 2x thin films during annealing in different atmospheres. Thin Solid Films, 2018, 658, 12-21.	0.8	2
18	Corrosion of 2024 alloy after ultrasonic impact cladding with iron. Surface Engineering, 2018, 34, 324-329	1.1	24

SIDORENKO SERGEY

#	Article	IF	CITATIONS
19	Plasmon Spectroscopy of a Surface of the Transition Metal Films after Low-Energy Ion Action. Metallofizika I Noveishie Tekhnologii, 2018, 40, 919-930.	0.2	3
20	Enhancement of Heat Resistance of Ti6Al4V Titanium Alloy by Formation of Oxide Composite Layers Using Ultrasonic Impact Treatment. Metallofizika I Noveishie Tekhnologii, 2018, 40, 1521-1537.	0.2	3
21	Materials Science Aspects of FePt-Based Thin Films' Formation. Progress in Physics of Metals, 2018, 19, 337-363.	0.5	2
22	Fabrication of Nanosize Films on the Base of Scutterudite CoSb\$_{3}\$ for Thermoelectric Devices. Progress in Physics of Metals, 2018, 19, 5-24.	0.5	1
23	Structure of Vanadium Films on SiO\$_2\$(001), MgO(100), Al\$_2\$O\$_3\$(0001), SrTiO\$_3\$(100) Substrates and Features of Their Thermal Oxidation. Metallofizika I Noveishie Tekhnologii, 2018, 40, 777-794.	0.2	1
24	The Secondary-Ion Emission: Matrix Effect. Progress in Physics of Metals, 2018, 19, 418-441.	0.5	0
25	Peculiarities of Structure and Phase Formation in the Surface Layers of 2024 Aluminium Alloy due to Ultrasonic Impact Treatment in Various Environments. Metallofizika I Noveishie Tekhnologii, 2017, 39, 49-68.	0.2	15
26	Mass Transfer in Nanosize Layers of Transition Metals Under the Influence of Ion–Plasma Processing. Metallofizika I Noveishie Tekhnologii, 2017, 39, 349-361.	0.2	3
27	Influence of the Ag and Cu Intermediate Layers on the Temperature Ranges of Phase Transformations in Pt/Fe Film Compositions. Metallofizika I Noveishie Tekhnologii, 2017, 38, 1599-1609.	0.2	0
28	Evolution of a Structure–Phase State and Microhardness of a Surface of Stainless Steel 12Cr18Ni10Ti in the Conditions of Ultrasonic Impact Treatment in Various Mediums. Metallofizika I Noveishie Tekhnologii, 2017, 39, 905-928.	0.2	10
29	Features of Deformation, Hardening and Mass Transfer After Ultrasonic Impact Surface Treatment of an Aluminium Alloy D16 by Various Strikers. Metallofizika I Noveishie Tekhnologii, 2017, 39, 1097-1117.	0.2	2
30	Effect of the Annealing Atmosphere on the Formation of Nanoscale Co–Sb Films—Functional Thermoelectric Elements. Metallofizika I Noveishie Tekhnologii, 2017, 39, 677-691.	0.2	1
31	A single-volume approach for vacancy formation thermodynamics calculations. Europhysics Letters, 2016, 116, 16001.	0.7	4
32	Secondary Ion Emission of High-Entropy Cr14.3Mn14.3Fe14.3Ni28.6Co14.3Cu14.3 Alloy. Powder Metallurgy and Metal Ceramics, 2016, 55, 458-463.	0.4	6
33	Thermally Activated Processes of the Phase Composition and Structure Formation of the Nanoscaled Co–Sb Films. Powder Metallurgy and Metal Ceramics, 2016, 54, 738-745.	0.4	1
34	Effect of Copper on the Formation of Ordered L10(FePt) Phase in Nanosized Fe50Pt50/Cu/Fe50Pt50 Films on SiO2/Si (001) Substrates. Powder Metallurgy and Metal Ceramics, 2016, 55, 109-113.	0.4	3
35	FePt Thin Films – Prospective Materials for Ultrahigh Density Magnetic Recording. Journal of Nano Research, 2016, 39, 151-161.	0.8	0
36	Low-temperature formation of the FePt phase in the presence of an intermediate Au layer in Pt /Au /Fe thin films. Journal Physics D: Applied Physics, 2016, 49, 035003.	1.3	16

SIDORENKO SERGEY

#	Article	IF	CITATIONS
37	Synthesis of Deformation-Induced Nanocomposites on Aluminium D16 Alloy Surface by Ultrasonic Impact Treatment. Metallofizika I Noveishie Tekhnologii, 2016, 38, 545-563.	0.2	20
38	Effect of Low-Energy Inert-Gas Ion Bombardment of the Metal Surface on the Oxygen Adsorption and Oxidation. Progress in Physics of Metals, 2016, 17, 209-228.	0.5	13
39	Influence of Copper on \$Ð4\$ to \$L1_{0}\$ Phase Transformation in Nanoscale Fe\$_{50}\$Pt\$_{50}\$ Films. Metallofizika I Noveishie Tekhnologii, 2016, 37, 487-498.	0.2	2
40	Effect of the â€~Diffusion Pump' in Nanosize Metal Compositions. Metallofizika I Noveishie Tekhnologii, 2016, 38, 669-682.	0.2	0
41	Nanoscale diffusion in Pt/56Fe/57Fe thin-film system. Thin Solid Films, 2015, 589, 173-181.	0.8	2
42	Diffusion and solid state reactions in Fe/Ag/Pt and FePt/Ag thin-film systems. Journal Physics D: Applied Physics, 2015, 48, 175001.	1.3	10
43	Formation of Cu <i>_x</i> Au _{1â~'} <i>_x</i> phases by cold homogenization of Au/Cu nanocrystalline thin films. Beilstein Journal of Nanotechnology, 2014, 5, 1491-1500.	1.5	13
44	Influence of the substrate choice on the L10phase formation of post-annealed Pt/Fe and Pt/Ag/Fe thin films. Journal of Applied Physics, 2014, 116, 044310.	1.1	15
45	Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films. Applied Physics A: Materials Science and Processing, 2014, 115, 203-211.	1.1	24
46	Influence of intermediate Ag layer on the structure and magnetic properties of Pt/Ag/Fe thin films. Vacuum, 2014, 101, 33-37.	1.6	15
47	Effect of Sb content on the phase composition of CoSb x nanofilms grown on a heated substrate. Inorganic Materials, 2014, 50, 431-436.	0.2	1
48	Enhanced diffusion caused by surface reactions in thin films of Sn–Cu–Mn. Thin Solid Films, 2014, 550, 723-731.	0.8	7
49	Structural and magnetic properties of annealed FePt/Ag/FePt thin films. Applied Surface Science, 2013, 266, 100-104.	3.1	31
50	Interdiffusion in Au(120Ânm)/Ni(70Ânm) thin films at the low-temperature annealing in the different atmospheres. Vacuum, 2013, 87, 69-74.	1.6	15
51	Influence of the annealing atmosphere on the structural properties of FePt thin films. Journal of Applied Physics, 2013, 114, .	1.1	22
52	Thermally driven redistribution of phases and components in Cu/Sn thin films. Journal of Alloys and Compounds, 2012, 535, 108-113.	2.8	4
53	The Effect of Plastic Deformation on Nitrogen Diffusion in α-Fe. Defect and Diffusion Forum, 2011, 309-310, 155-160.	0.4	0
54	Formation of surface periodic microstructure at laser irradiation of the multilayer Ni/Cu/Cr system. Applied Surface Science, 2008, 255, 1712-1718.	3.1	3

SIDORENKO SERGEY

#	Article	IF	CITATIONS
55	Nanotechnology of CoSi <inf>2</inf> epitaxial film formation on monocryctalline silicon. , 2008, , .		0
56	Resonant tunneling of surface plasmon-polaritons. Optics Express, 2007, 15, 6380.	1.7	42
57	Formation of Nanocrystalline Structure of TaSi2 Films on Silicon. Powder Metallurgy and Metal Ceramics, 2003, 42, 14-18.	0.4	10
58	Investigation of a pulsed magnetron sputtering discharge with a vacuum pentode modulator power supply. Vacuum, 2003, 72, 59-69.	1.6	5
59	STRUCTURE FORMATION OF SURFACE DIFFUSION LAYERS IN COLD DEFORMED IRON-BASED ALLOYS UNDER SATURATION BY NITROGEN AND CARBON. , 2001, , .		0
60	Structure Changes in Ni-Ga System due to Reactive Interdiffusion. Defect and Diffusion Forum, 1997, 143-147, 1511-1516.	0.4	0
61	Optical properties of amorphous and crystalline FeSi2, TiSi2, MoSi2 and CrSi2 films. Microelectronic Engineering, 1997, 37-38, 559-564.	1.1	4
62	Formation of the structure and properties of molybdenum disilicide films during solidification on silicon. Powder Metallurgy and Metal Ceramics, 1996, 35, 157-160.	0.4	0
63	A possible cause of difference in lattice constant between bulk specimens and vacuum-deposited films. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1977, 20, 132-133.	0.0	0
64	Diffusion Phase Formation in the Cu-Sn Nanofilms System. Defect and Diffusion Forum, 0, 309-310, 167-176.	0.4	1
65	The Diffusion Problem of New Phase Inclusion Growth in Bounded Regions of Oversaturated Solid Solution. Defect and Diffusion Forum, 0, 329, 99-111.	0.4	0
66	Structural and Concentration Heterogeneities during Formation of Silicide Phases in the Thin Film System Ti(5nm)/Ni(24nm)/Si(001). Defect and Diffusion Forum, 0, 344, 79-84.	0.4	0