Jacqueline Fiona Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7648236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. Geophysical Research Letters, 2022, 49, .	1.5	8
2	Sources of non-methane hydrocarbons in surface air in Delhi, India. Faraday Discussions, 2021, 226, 409-431.	1.6	23
3	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. Faraday Discussions, 2021, 226, 382-408.	1.6	13
4	Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India. Environmental Science Atmospheres, 2021, 1, 104-117.	0.9	11
5	Key Role of NO ₃ Radicals in the Production of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing. Environmental Science & Technology, 2021, 55, 842-853.	4.6	18
6	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2383-2406.	1.9	29
7	Low-NO atmospheric oxidation pathways in a polluted megacity. Atmospheric Chemistry and Physics, 2021, 21, 1613-1625.	1.9	24
8	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	1.9	64
9	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2407-2426.	1.9	33
10	An Automated Methodology for Non-targeted Compositional Analysis of Small Molecules in High Complexity Environmental Matrices Using Coupled Ultra Performance Liquid Chromatography Orbitrap Mass Spectrometry. Environmental Science & Technology, 2021, 55, 7365-7375.	4.6	18
11	Atmospheric Chemistry of 2-Amino-2-methyl-1-propanol: A Theoretical and Experimental Study of the OH-Initiated Degradation under Simulated Atmospheric Conditions. Journal of Physical Chemistry A, 2021, 125, 7502-7519.	1.1	5
12	Importance of Oxidants and Temperature in the Formation of Biogenic Organosulfates and Nitrooxy Organosulfates. ACS Earth and Space Chemistry, 2021, 5, 2291-2306.	1.2	13
13	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 13609-13630.	1.9	28
14	Emission estimates and inventories of non-methane volatile organic compounds from anthropogenic burning sources in India. Atmospheric Environment: X, 2021, 11, 100115.	0.8	6
15	Non-methane volatile organic compounds emitted from domestic fuels in Delhi: Emission factors and total city-wide emissions. Atmospheric Environment: X, 2021, 11, 100127.	0.8	5
16	Experimental and Theoretical Study of the OH-Initiated Degradation of Piperazine under Simulated Atmospheric Conditions. Journal of Physical Chemistry A, 2021, 125, 411-422.	1.1	10
17	Measurements of traffic-dominated pollutant emissions in a Chinese megacity. Atmospheric Chemistry and Physics, 2020, 20, 8737-8761.	1.9	33
18	An increasing role for solvent emissions and implications for future measurements of volatile organic compounds. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190328.	1.6	22

#	Article	IF	CITATIONS
19	Aromatic Photo-oxidation, A New Source of Atmospheric Acidity. Environmental Science & Technology, 2020, 54, 7798-7806.	4.6	43
20	New Approach Combining Molecular Fingerprints and Machine Learning to Estimate Relative Ionization Efficiency in Electrospray Ionization. ACS Omega, 2020, 5, 9510-9516.	1.6	11
21	Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 7531-7552.	1.9	35
22	A comparison of PM _{2.5} -bound polycyclic aromatic hydrocarbons in summer Beijing (China) and Delhi (India). Atmospheric Chemistry and Physics, 2020, 20, 14303-14319.	1.9	30
23	Elevated levels of OH observed in haze events during wintertime in central Beijing. Atmospheric Chemistry and Physics, 2020, 20, 14847-14871.	1.9	62
24	Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation. Atmospheric Chemistry and Physics, 2020, 20, 9783-9803.	1.9	39
25	An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate. Atmospheric Measurement Techniques, 2020, 13, 6325-6341.	1.2	16
26	Variability of polycyclic aromatic hydrocarbons and their oxidative derivatives in wintertime Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 8741-8758.	1.9	40
27	A new aerosol flow reactor to study secondary organic aerosol. Atmospheric Measurement Techniques, 2019, 12, 4519-4541.	1.2	10
28	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)†Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	1.9	95
29	Chemical characterisation of water-soluble ions in atmospheric particulate matter on the east coast of Peninsular Malaysia. Atmospheric Chemistry and Physics, 2019, 19, 1537-1553.	1.9	30
30	Theoretical and Experimental Study on the Reaction of <i>tert</i> Butylamine with OH Radicals in the Atmosphere. Journal of Physical Chemistry A, 2018, 122, 4470-4480.	1.1	13
31	Water-Soluble Organic Composition of the Arctic Sea Surface Microlayer and Association with Ice Nucleation Ability. Environmental Science & Technology, 2018, 52, 1817-1826.	4.6	23
32	Ozonolysis of <i>α</i> -phellandrene – PartÂ2: Compositional analysis of secondary organic aerosol highlights the role of stabilised Criegee intermediates. Atmospheric Chemistry and Physics, 2018, 18, 4673-4693.	1.9	11
33	Technical note: Use of an atmospheric simulation chamber to investigate the effect of different engine conditions on unregulated VOC-IVOC diesel exhaust emissions. Atmospheric Chemistry and Physics, 2018, 18, 11073-11096.	1.9	21
34	Redox Couple Involving NO _{<i>x</i>} in Aerobic Pd-Catalyzed Oxidation of sp ³ -C–H Bonds: Direct Evidence for Pd–NO ₃ [–] /NO ₂ [–] Interactions Involved in Oxidation and Reductive Elimination. Journal of the American Chemical Society, 2017, 139, 1177-1190.	6.6	31
35	Accurate representations of the physicochemical properties of atmospheric aerosols: when are laboratory measurements of value?. Faraday Discussions, 2017, 200, 639-661.	1.6	23
36	The import and export of organic nitrogen species at a Scottish ombrotrophic peatland. Biogeosciences, 2016, 13, 2353-2365.	1.3	5

#	Article	IF	CITATIONS
37	Development of a Combined Heart-Cut and Comprehensive Two-Dimensional Gas Chromatography System to Extend the Carbon Range of Volatile Organic Compounds Analysis in a Single Instrument. Separations, 2016, 3, 21.	1.1	4
38	Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Scientific Reports, 2016, 6, 36623.	1.6	51
39	Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for LondonÂ(ClearfLo) campaign. Atmospheric Chemistry and Physics, 2016, 16, 6453-6473.	1.9	60
40	Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production. Atmospheric Chemistry and Physics, 2016, 16, 2109-2122.	1.9	73
41	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions. Environmental Science & Technology, 2016, 50, 1243-1250.	4.6	97
42	Atmospheric ethanol in London and the potential impacts of future fuel formulations. Faraday Discussions, 2016, 189, 105-120.	1.6	16
43	Protein sequences bound to mineral surfaces persist into deep time. ELife, 2016, 5, .	2.8	176
44	The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of 2012, and an investigation of the role of Cl atom oxidation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5638-5657.	1.2	76
45	Comparative study of comprehensive gas chromatography-nitrogen chemiluminescence detection and gas chromatography-ion trap-tandem mass spectrometry for determining nicotine and carcinogen organic nitrogen compounds in thirdhand tobacco smoke. Journal of Chromatography A, 2015, 1426, 191-200.	1.8	20
46	The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chemical Reviews, 2015, 115, 3919-3983.	23.0	417
47	Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation. Environmental Science & Technology, 2015, 49, 13168-13178.	4.6	42
48	Estimated Exposure Risks from Carcinogenic Nitrosamines in Urban Airborne Particulate Matter. Environmental Science & Technology, 2015, 49, 9648-9656.	4.6	51
49	Improving the Quantification of Secondary Organic Aerosol Using a Microflow Reactor Coupled to HPLC-MS and NMR to Manufacture Ad Hoc Calibration Standards. Analytical Chemistry, 2014, 86, 11238-11245.	3.2	17
50	Effect of roasting method and oil reduction on volatiles of roasted Pistacia terebinthus using direct thermal desorption-GCxGC-TOF/MS. LWT - Food Science and Technology, 2014, 59, 283-288.	2.5	13
51	Exposure to nitrosamines in thirdhand tobacco smoke increases cancer risk in non-smokers. Environment International, 2014, 71, 139-147.	4.8	87
52	A compact comprehensive two-dimensional gas chromatography (GC×GC) approach for the analysis of biogenic VOCs. Analytical Methods, 2013, 5, 141-150.	1.3	13
53	Online and offline mass spectrometric study of the impact of oxidation and ageing on glyoxal chemistry and uptake onto ammonium sulfate aerosols. Faraday Discussions, 2013, 165, 447.	1.6	30
54	Determination of nicotine and N-nitrosamines in house dust by pressurized liquid extraction and comprehensive gas chromatography—Nitrogen chemiluminiscence detection. Journal of Chromatography A, 2012, 1219, 180-187.	1.8	57

#	Article	IF	CITATIONS
55	New Sensitive and Quantitative Analysis Method for Organic Nitrogen Compounds in Urban Aerosol Samples. Environmental Science & Technology, 2011, 45, 1497-1505.	4.6	49
56	Determination of airborne carbonyls via pentafluorophenylhydrazine derivatisation by GC–MS and its comparison with HPLC method. Talanta, 2011, 85, 406-414.	2.9	47
57	The application of two total transfer valve modulators for comprehensive twoâ€dimensional gas chromatography of volatile organic compounds. Journal of Separation Science, 2011, 34, 812-821.	1.3	14
58	Alkyl nitrate photochemistry during the tropospheric organic chemistry experiment. Atmospheric Environment, 2010, 44, 773-785.	1.9	26
59	Microfabricated planar glass gas chromatography with photoionization detection. Journal of Chromatography A, 2010, 1217, 768-774.	1.8	53
60	Analysis of Organic Nitrogen Compounds in Urban Aerosol Samples Using GCxGC-TOF/MS. Aerosol Science and Technology, 2010, 44, 109-116.	1.5	45
61	Using Comprehensive Two-Dimensional Gas Chromatography to Study the Atmosphere. Journal of Chromatographic Science, 2010, 48, 274-282.	0.7	40
62	Determination of volatile nitrosamines in various meat products using comprehensive gas chromatography–nitrogen chemiluminescence detection. Food and Chemical Toxicology, 2010, 48, 3268-3273.	1.8	79
63	Measurement and calculation of OH reactivity at a United Kingdom coastal site. Journal of Atmospheric Chemistry, 2009, 64, 53-76.	1.4	38
64	Observations of an atmospheric chemical equator and its implications for the tropical warm pool region. Journal of Geophysical Research, 2008, 113, .	3.3	31
65	Characterization of Polar Compounds and Oligomers in Secondary Organic Aerosol Using Liquid Chromatography Coupled to Mass Spectrometry. Analytical Chemistry, 2008, 80, 474-480.	3.2	48
66	FORMATION OF OXYGENATED-POLYCYCLIC AROMATIC COMPOUNDS IN AEROSOL FROM THE PHOTO-OXIDATION OFo-TOLUALDEHYDE. Polycyclic Aromatic Compounds, 2006, 26, 237-252.	1.4	10
67	Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals. Atmospheric Environment, 2005, 39, 7263-7275.	1.9	139
68	Analysis of volatile components from Ziziphora taurica subsp. taurica by steam distillation, superheated-water extraction, and direct thermal desorption with GC×GC–TOFMS. Analytical and Bioanalytical Chemistry, 2005, 382, 115-119.	1.9	47
69	Modelling the ambient distribution of organic compounds during the August 2003 ozone episode in the southern UK. Faraday Discussions, 2005, 130, 311.	1.6	43
70	Monoaromatic complexity in urban air and gasoline assessed using comprehensive GC and fast GC-TOF/MS. Atmospheric Environment, 2003, 37, 589-602.	1.9	42
71	Peak amplitude and resolution in comprehensive gas chromatography using valve modulation. Journal of Separation Science, 2003, 26, 578-584.	1.3	23