John D Thrower

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7647957/publications.pdf

Version: 2024-02-01

516215 580395 32 630 16 25 citations g-index h-index papers 32 32 32 612 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H ₂ FORMATION. Astrophysical Journal, 2012, 752, 3.	1.6	75
2	THE CATALYTIC ROLE OF CORONENE FOR MOLECULAR HYDROGEN FORMATION. Astrophysical Journal Letters, 2012, 745, L2.	3.0	72
3	Laboratory investigations of the interaction between benzene and bare silicate grain surfaces. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1510-1518.	1.6	45
4	Interaction between Coronene and Graphite from Temperature-Programmed Desorption and DFT-vdW Calculations: Importance of Entropic Effects and Insights into Graphite Interlayer Binding. Journal of Physical Chemistry C, 2013, 117, 13520-13529.	1.5	45
5	Laboratory studies of electron and ion irradiation of solid acetonitrile (CH ₃ CN). Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110586.	1.6	37
6	Thermal desorption of C6H6 from surfaces of astrophysical relevance. Journal of Chemical Physics, 2009, 131, 244711.	1.2	34
7	Desorption of Hot Molecules from Photon Irradiated Interstellar Ices. Astrophysical Journal, 2008, 673, 1233-1239.	1.6	30
8	Polycyclic aromatic hydrocarbons – catalysts for molecular hydrogen formation. Faraday Discussions, 2014, 168, 223-234.	1.6	25
9	Identification of stable configurations in the superhydrogenation sequence of polycyclic aromatic hydrocarbon molecules. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5492-5498.	1.6	25
10	Thermal desorption of ammonia from crystalline forsterite surfaces. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3317-3327.	1.6	22
11	Thermal desorption of astrophysically relevant molecules from forsterite (010). Monthly Notices of the Royal Astronomical Society, 2017, 472, 389-399.	1.6	22
12	Meteorite nanoparticles as models for interstellar grains: Synthesis and preliminary characterisation. Faraday Discussions, 2006, 133, 103.	1.6	20
13	Superhydrogenation of pentacene: the reactivity of zigzag-edges. Physical Chemistry Chemical Physics, 2020, 22, 1557-1565.	1.3	20
14	Surface science investigations of photoprocesses in model interstellar ices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 919-924.	0.9	18
15	Highly efficient electron-stimulated desorption of benzene from amorphous solid water ice. Chemical Physics Letters, 2011, 505, 106-111.	1.2	18
16	Efficient electron-promoted desorption of benzene from water ice surfaces. Physical Chemistry Chemical Physics, 2016, 18, 4026-4034.	1.3	18
17	Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 799-806.	0.9	17
18	Hydrogenation of PAH molecules through interaction with hydrogenated carbonaceous grains. Physical Chemistry Chemical Physics, 2014, 16, 3381-3387.	1.3	17

#	Article	IF	CITATIONS
19	Electron-Promoted Desorption from Water Ice Surfaces: Neutral Gas-Phase Products. ACS Earth and Space Chemistry, 2017, 1, 209-215.	1.2	12
20	The influence of coronene super-hydrogenation on the coronene-graphite interaction. Journal of Chemical Physics, 2016, 145, 174708.	1.2	11
21	Surface Science Investigations of Icy Mantle Growth on Interstellar Dust Grains in Cooling Environments. ACS Earth and Space Chemistry, 2019, 3, 1915-1931.	1.2	10
22	Superhydrogenated PAHs: Catalytic formation of H ₂ . EAS Publications Series, 2011, 46, 453-460.	0.3	7
23	UV/Vis spectroscopy of C60 embedded in water ice. Chemical Physics Letters, 2012, 550, 79-82.	1.2	7
24	An experimental and theoretical study of the photoelectron spectrum of hydrogen selenide. Chemical Physics, 2005, 315, 121-132.	0.9	6
25	Growth and electronic properties of bi- and trilayer graphene on Ir(111). Nanoscale, 2020, 12, 19776-19786.	2.8	5
26	Lyl± Irradiation of Superhydrogenated Coronene Films: Implications for H ₂ Formation. Astrophysical Journal Letters, 2021, 908, L18.	3.0	4
27	XUV photodesorption of carbon cluster ions and ionic photofragments from a mixed methane–water ice. Physical Chemistry Chemical Physics, 2018, 20, 7457-7469.	1.3	3
28	Laboratory evidence for the formation of hydrogenated fullerene molecules. Proceedings of the International Astronomical Union, 2019, 15, 144-147.	0.0	3
29	Deuteration of C60 on a highly oriented pyrolytic graphite surface. Proceedings of the International Astronomical Union, 2019, 15, 458-459.	0.0	1
30	H2 catalysis through superhydrogenation of interstellar polycyclic aromatic hydrocarbons. Proceedings of the International Astronomical Union, 2019, 15, 264-266.	0.0	1
31	Highlights from Faraday Discussion 168: Astrochemistry of Dust, Ice and Gas, Leiden, The Netherlands, April 2014. Chemical Communications, 2014, 50, 13636-13644.	2.2	0
32	Selective hydrogenation of graphene on $Ir(111)$: an X-ray standing wave study. Faraday Discussions, 2022, , .	1.6	0