Yong-Chan Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7647707/publications.pdf

Version: 2024-02-01

50 papers 1,505 citations

361045 20 h-index 315357 38 g-index

50 all docs 50 docs citations

50 times ranked

1044 citing authors

#	Article	IF	Citations
1	The grafted carbendazim and 2,4,6-tris(dimethylaminomethyl)phenyl group onto polyurethane to improve its antifungal effectiveness and hydrophilicity. Polymer Bulletin, 2021, 78, 621-642.	1.7	2
2	The Preparation and Characterization of an Epoxy Polyurethane Hybrid Polymer Using Bisphenol A and Epichlorohydrin. Fibers and Polymers, 2020, 21, 447-455.	1.1	2
3	Grafted Polyurethane Copolymers with Notable Changes in Tensile and Shape Memory Properties upon Addition of Acid and Base. Fibers and Polymers, 2020, 21, 2429-2439.	1.1	O
4	Influence of Grafted Poly(Methyl Methacrylate) on Polyurethane with Respect to Film Transparency and Linear Shape Memory Effect. Bulletin of the Korean Chemical Society, 2018, 39, 583-586.	1.0	2
5	Application of recycled polyol and benzimidazole to the enhancement of antifungal activity of polyurethane. Journal of Applied Polymer Science, 2018, 135, 46600.	1.3	3
6	Effect of the ionized carboxyl group on the water compatibility and the antifungal activity of the benzimidazole-grafted polyurethane. Polymer Bulletin, 2017, 74, 3721-3737.	1.7	8
7	Enhancement in Tensile Mechanical and Shape Recovery Properties of Polyurethane by Incorporating Graftâ€polymerized Poly(≀i>tert⟨/i>â€Butyl Acrylate) into Polyurethane. Bulletin of the Korean Chemical Society, 2017, 38, 1196-1202.	1.0	1
8	Characterization of dimethylphenyl-grafted polyurethane: the impact on tensile and shape recovery properties. Fibers and Polymers, 2017, 18, 2034-2039.	1.1	0
9	Citric acid grafting onto polyurethane for the control of molecular interactions and water compatibility. Journal of Elastomers and Plastics, 2016, 48, 691-710.	0.7	1
10	Characterization and Effect of Covalently Grafted Benzoic Acid on the Low Temperature Flexibility and Water Vapor Permeability of a Polyurethane Copolymer. Polymer-Plastics Technology and Engineering, 2016, 55, 356-367.	1.9	6
11	Preparation of waterâ€compatible antifungal polyurethane with grafted benzimidazole as the antifungal agent. Journal of Applied Polymer Science, 2015, 132, .	1.3	24
12	Recycling and surface modification of waste bottom ash from coal power plants for the preparation of polypropylene and polyethylene composites. Journal of Material Cycles and Waste Management, 2015, 17, 781-789.	1.6	7
13	Polyurethane membrane functionalization with the grafted cellulose derivatives to control water vapor permeability. Fibers and Polymers, 2015, 16, 492-502.	1.1	10
14	Effects of the structures of end groups of pendant polydimethylsiloxane attached to a polyurethane copolymer on the low temperature toughness. Polymer Engineering and Science, 2015, 55, 1931-1940.	1.5	12
15	Covalent Incorporation of Cellulose Derivative into Polyurethane Copolymers and the Effect on Crosslinking and Water Vapor Permeability. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 339-349.	1.2	9
16	Characterization and proof testing of the halochromic shape memory polyurethane. Polymer Bulletin, 2014, 71, 1153-1171.	1.7	37
17	Lateral sol–gel cross-linking of polyurethane using the a grafted triethoxysilyl group. Journal of Sol-Gel Science and Technology, 2014, 72, 543-552.	1.1	13
18	Selective cationic surfactant detection in aqueous solution by polyurethane copolymer linked with metal ion indicator. Fibers and Polymers, 2013, 14, 2069-2076.	1.1	4

#	Article	IF	CITATIONS
19	lonic crosslinking of polyurethane copolymers by the grafted pendant groups. Macromolecular Research, 2012, 20, 883-886.	1.0	3
20	Characterization of the ion-paired polyurethane copolymers. Fibers and Polymers, 2012, 13, 1214-1218.	1.1	2
21	Characterization and low temperature test of the flexibly crosslinked polyurethane copolymer by poly(dimethylsiloxane). High Performance Polymers, 2012, 24, 200-209.	0.8	30
22	Low temperature shape recovery effect of polyurethane copolymer grafted with pendant n-butyl group. Fibers and Polymers, 2012, 13, 8-15.	1.1	3
23	The exceptional low temperature flexibility of polyurethane copolymer grafted with dimethylphenyl group. Fibers and Polymers, 2012, 13, 411-414.	1.1	8
24	Grafting of shape memory polyurethane with poly(ethyleneimine) and the effect on electrolytic attraction in aqueous solution and shape recovery properties. Macromolecular Research, 2012, 20, 66-75.	1.0	25
25	The MDI-Mediated Lateral Crosslinking of Polyurethane Copolymer and the Impact on Tensile Properties and Shape Memory Effect. Bulletin of the Korean Chemical Society, 2012, 33, 692-694.	1.0	26
26	Lateral flexible linking of polyurethane copolymer and the effect on shape recovery and tensile mechanical properties. Polymer Engineering and Science, 2010, 50, 2457-2466.	1.5	40
27	Effects of the Pendant Naphthalene Group on the Mechanical Properties and Low Temperature Shape Memory Effect of Polyurethane Copolymer. Journal of Intelligent Material Systems and Structures, 2009, 20, 1163-1170.	1.4	15
28	Flexible crossâ€linking by both pentaerythritol and polyethyleneglycol spacer and its impact on the mechanical properties and the shape memory effects of polyurethane. Journal of Applied Polymer Science, 2009, 112, 2800-2808.	1.3	45
29	Shape-memory effects of polyurethane copolymer cross-linked by dextrin. Journal of Materials Science, 2008, 43, 6366-6373.	1.7	36
30	Dependence of montmorillonite dispersion in nanocomposites on polymer matrix and compatibilizer content, and the impact on mechanical properties. Fibers and Polymers, 2008, 9, 7-14.	1.1	12
31	Effect of glycerol cross-linking and PDI on the shape memory effect and mechanical properties of polyurethane. Fibers and Polymers, 2008, 9, 388-392.	1.1	7
32	Shape memory effects of polyurethane block copolymers cross-linked by celite. Fibers and Polymers, 2008, 9, 661-666.	1.1	21
33	Blocking of soft segments with different chain lengths and its impact on the shape memory property of polyurethane copolymer. Journal of Applied Polymer Science, 2007, 103, 1435-1441.	1.3	34
34	Mechanical properties of polyurethane/montmorillonite nanocomposite prepared by melt mixing. Journal of Applied Polymer Science, 2007, 106, 712-721.	1.3	26
35	Structure-property relationship and shape memory effect of polyurethane copolymer cross-linked with pentaerythritol. Fibers and Polymers, 2007, 8, 7-12.	1.1	29
36	Microstructure and mechanical properties of polyurethane/nylon/montmorillonite nanocomposite. Fibers and Polymers, 2007, 8, 43-49.	1.1	6

#	Article	IF	CITATIONS
37	Effect of glycerol cross-linking and hard segment content on the shape memory property of polyurethane block copolymer. Journal of Materials Science, 2007, 42, 6524-6531.	1.7	40
38	Structure–property relationship of shape memory polyurethane cross-linked by a polyethyleneglycol spacer between polyurethane chains. Journal of Materials Science, 2007, 42, 9045-9056.	1.7	59
39	Thermomechanical properties and shape memory effect of PET-PEG copolymers cross-linked with pentaerythritol. Fibers and Polymers, 2006, 7, 328-332.	1.1	17
40	Effect of metallocene-catalyzed polyethylene on the rheological and mechanical properties of poly(phenylene sulfide)/polyethylene blends. Fibers and Polymers, 2004, 5, 145-150.	1.1	6
41	Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane. Journal of Applied Polymer Science, 2004, 92, 2812-2816.	1.3	72
42	Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. Journal of Applied Polymer Science, 2004, 93, 2410-2415.	1.3	63
43	Vibration control ability of multilayered composite material made of epoxy beam and polyurethane copolymer with shape memory effect. Journal of Applied Polymer Science, 2004, 94, 302-307.	1.3	13
44	Shape memory effect of poly(ethylene terephthalate) and poly(ethylene glycol) copolymer cross-linked with glycerol and sulfoisophthalate group and its application to impact-absorbing composite material. Journal of Applied Polymer Science, 2004, 94, 308-316.	1.3	23
45	Characterization and mechanical properties of prepolymer and polyurethane block copolymer with a shape memory effect. Fibers and Polymers, 2003, 4, 114-118.	1.1	9
46	Dynamic mechanical properties of sandwich-structured epoxy beam composites containing poly(ethyleneterephthalate)/poly(ethyleneglycol) copolymer with shape memory effect. Journal of Applied Polymer Science, 2003, 90, 3141-3149.	1.3	18
47	PEG-based surfactants that show high selectivity in disrupting vesicular membrane with or without cholesterol. Colloids and Surfaces B: Biointerfaces, 2003, 32, 11-18.	2.5	19
48	Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 2003, 44, 3251-3258.	1.8	205
49	Enhanced dynamic mechanical and shape-memory properties of a poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Ove Polymer Science, 2002, 83, 27-37.	erlock 10 T 1.3	Γf 50 267 Tc 50
50	Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect. Macromolecules, 2001, 34, 6431-6437.	2.2	402