Teresa Jaijo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7647532/publications.pdf Version: 2024-02-01

TEDESA JALLO

#	Article	IF	CITATIONS
1	An Update on the Genetics of Usher Syndrome. Journal of Ophthalmology, 2011, 2011, 1-8.	1.3	160
2	Vocal cord paresis and diaphragmatic dysfunction are severe and frequent symptoms of GDAP1-associated neuropathy. Brain, 2008, 131, 3051-3061.	7.6	89
3	Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Scientific Reports, 2021, 11, 1526.	3.3	71
4	Altered Antioxidant-Oxidant Status in the Aqueous Humor and Peripheral Blood of Patients with Retinitis Pigmentosa. PLoS ONE, 2013, 8, e74223.	2.5	64
5	A Genetic Basis for Mechanosensory Traits in Humans. PLoS Biology, 2012, 10, e1001318.	5.6	61
6	Targeted next generation sequencing for molecular diagnosis of Usher syndrome. Orphanet Journal of Rare Diseases, 2014, 9, 168.	2.7	61
7	Clinical Aspects of Usher Syndrome and the <i>USH2A</i> Gene in a Cohort of 433 Patients. JAMA Ophthalmology, 2015, 133, 157.	2.5	59
8	Microarray-Based Mutation Analysis of 183 Spanish Families with Usher Syndrome. , 2010, 51, 1311.		57
9	USH2A Gene Editing Using the CRISPR System. Molecular Therapy - Nucleic Acids, 2017, 8, 529-541.	5.1	56
10	The USH2A c.2299delG mutation: dating its common origin in a Southern European population. European Journal of Human Genetics, 2010, 18, 788-793.	2.8	47
11	Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations. Orphanet Journal of Rare Diseases, 2011, 6, 65.	2.7	47
12	Usher Syndrome: Genetics of a Human Ciliopathy. International Journal of Molecular Sciences, 2021, 22, 6723.	4.1	38
13	High-throughput sequencing for the molecular diagnosis of Usher syndrome reveals 42 novel mutations and consolidates CEP250 as Usher-like disease causative. Scientific Reports, 2018, 8, 17113.	3.3	30
14	Identification of Large Rearrangements of the <i>PCDH15</i> Gene by Combined MLPA and a CGH: Large Duplications Are Responsible for Usher Syndrome. , 2010, 51, 5480.		28
15	Expanding the Clinical and Molecular Heterogeneity of Nonsyndromic Inherited RetinalÂDystrophies. Journal of Molecular Diagnostics, 2020, 22, 532-543.	2.8	27
16	Phosphodiesterase inhibition induces retinal degeneration, oxidative stress and inflammation in cone-enriched cultures of porcine retina. Experimental Eye Research, 2013, 111, 122-133.	2.6	24
17	Study of USH1 Splicing Variants through Minigenes and Transcript Analysis from Nasal Epithelial Cells. PLoS ONE, 2013, 8, e57506.	2.5	21
18	Updating the Genetic Landscape of Inherited Retinal Dystrophies. Frontiers in Cell and Developmental Biology, 2021, 9, 645600.	3.7	18

Teresa Jaijo

#	Article	IF	CITATIONS
19	The importance of biochemical and genetic findings in the diagnosis of atypical Norrie disease. Clinical Chemistry and Laboratory Medicine, 2018, 56, 229-235.	2.3	17
20	Improving the Management of Patients with Hearing Loss by the Implementation of an NGS Panel in Clinical Practice. Genes, 2020, 11, 1467.	2.4	16
21	Sequence variants of the DFNB31 gene among Usher syndrome patients of diverse origin. Molecular Vision, 2010, 16, 495-500.	1.1	13
22	Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa. Molecular Vision, 2014, 20, 1398-410.	1.1	12
23	Screening of theUSH1GGene among Spanish Patients with Usher Syndrome. Lack of Mutations and Evidence of a Minor Role in the Pathogenesis of the Syndrome. Ophthalmic Genetics, 2007, 28, 151-155.	1.2	11
24	Mutation screening of the PCDH15 gene in Spanish patients with Usher syndrome type I. Molecular Vision, 2012, 18, 1719-26.	1.1	11
25	Expanding the Genetic Landscape of Usher-Like Phenotypes. , 2019, 60, 4701.		9
26	Two novel disease-causing mutations in the CLRN1 gene in patients with Usher syndrome type 3. Molecular Vision, 2012, 18, 3070-8.	1.1	9
27	Genotype–phenotype correlation in patients with Usher syndrome and pathogenic variants in <i>MYO7A</i> : implications for future clinical trials. Acta Ophthalmologica, 2021, 99, 922-930.	1.1	8
28	Epilepsy, status epilepticus, and hemiplegic migraine coexisting with a novel SLC4A4 mutation. Neurological Sciences, 2021, 42, 3647-3654.	1.9	8
29	Genetic Screening of the Usher Syndrome in Cuba. Frontiers in Genetics, 2019, 10, 501.	2.3	7
30	Clinical and genetic characteristics of 21 Spanish patients with biallelic pathogenic SPG7 mutations. Journal of the Neurological Sciences, 2021, 429, 118062.	0.6	5
31	Novel mutations in the USH1C gene in Usher syndrome patients. Molecular Vision, 2010, 16, 2948-54.	1.1	5
32	Functional assays of non-canonical splice-site variants in inherited retinal dystrophies genes. Scientific Reports, 2022, 12, 68.	3.3	5
33	Prevalent ALMS1 Pathogenic Variants in Spanish Alström Patients. Genes, 2021, 12, 282.	2.4	4
34	Hereditary Spastic Paraplegia 7 Presenting as Multifocal Dystonia with Prominent <scp>Cranio ervical</scp> Involvement. Movement Disorders Clinical Practice, 2021, 8, 966-968.	1.5	4
35	Presenilin-1 Mutations Are a Cause of Primary Lateral Sclerosis-Like Syndrome. Frontiers in Molecular Neuroscience, 2021, 14, 721047.	2.9	3
36	CONCOMITANT MUTATIONS IN INHERITED RETINAL DYSTROPHIES. Retina, 2021, 41, 1966-1975.	1.7	2

TERESA JAIJO

#	Article	IF	CITATIONS
37	Exome sequencing identifies mutations in three cases diagnosed with Retinitis Pigmentosa and hearing impairment. Molecular Vision, 2020, 26, 216-225.	1.1	2
38	Axonemal Symmetry Break, a New Ultrastructural Diagnostic Tool for Primary Ciliary Dyskinesia?. Diagnostics, 2022, 12, 129.	2.6	2
39	Modeling a Novel Variant of Glycogenosis IXa Using a Clonal Inducible Reprogramming System to Generate "Diseased―Hepatocytes for Accurate Diagnosis. Journal of Personalized Medicine, 2022, 12, 1111.	2.5	2