
Manila Ozhukil Valappil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7647198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorene quantum dots: synthesis, properties and catalytic applications. Nanoscale, 2022, 14, 1037-1053.	5.6	9
2	The Influence of Monolayer and Multilayer Diazonium Functionalities on the Electrochemical Oxidation of Nanoporous Carbons. Journal of the Electrochemical Society, 2022, 169, 031512.	2.9	3
3	Phosphorene Oxide Quantum Dots Decorated ZnO Nanostructure-Based Hydrogen Gas Sensor. IEEE Sensors Journal, 2021, 21, 7283-7290.	4.7	10
4	Corrosion Susceptibility of Mesoporous Carbons: Evidential Understanding of the Effects of Quasi-Passive Oxide Formation. ECS Meeting Abstracts, 2021, MA2021-02, 541-541.	0.0	1
5	Tungsten disulfide Quantum Dots Based Disposable Paper Based Lab on GenoChip for Specific Meningitis DNA Detection. Journal of the Electrochemical Society, 2020, 167, 107501.	2.9	18
6	Electrochemical transformation of black phosphorous to phosphorene quantum dots: effect of nitrogen doping. Materials Research Express, 2020, 7, 014005.	1.6	5
7	Bismuthene nanosheets produced by ionic liquid assisted grinding exfoliation and their use for oxygen reduction reaction. RSC Advances, 2020, 10, 43585-43591.	3.6	13
8	Electrochemically chopped WS ₂ quantum dots as an efficient and stable electrocatalyst for water reduction. Catalysis Science and Technology, 2019, 9, 223-231.	4.1	32
9	Electrochemically Exfoliated Porous WS ₂ Nanosheets: A Potential Electrochemical Sensing Platform for Chlorpromazine Detection. Journal of the Electrochemical Society, 2019, 166, B749-B755.	2.9	18
10	Role of Structural Distortion in Stabilizing Electrosynthesized Blue-Emitting Phosphorene Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 973-980.	4.6	10
11	Adsorption Kinetics of WS ₂ Quantum Dots onto a Polycrystalline Gold Surface. Langmuir, 2018, 34, 5374-5380.	3.5	3
12	A single-step, electrochemical synthesis of nitrogen doped blue luminescent phosphorene quantum dots. Chemical Communications, 2018, 54, 11733-11736.	4.1	21
13	A Singleâ€Step Electrochemical Synthesis of Luminescent WS ₂ Quantum Dots. Chemistry - A European Journal, 2017, 23, 9144-9148.	3.3	52
14	Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications. Applied Materials Today, 2017, 9, 350-371.	4.3	89
15	Atomic Layers in Electrochemical Biosensing Applications - Graphene and Beyond. Current Organic Chemistry, 2015, 19, 1163-1175.	1.6	13
16	Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy and Environmental Science, 2014, 7, 1059.	30.8	156