
Catherine Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7647140/publications.pdf Version: 2024-02-01

CATHEDINE FLODES

#	Article	IF	CITATIONS
1	Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma. Clinical Cancer Research, 2016, 22, 582-595.	7.0	88
2	Modulation of temozolomide dose differentially affects T-cell response to immune checkpoint inhibition. Neuro-Oncology, 2019, 21, 730-741.	1.2	63
3	Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles. Oncolmmunology, 2017, 6, e1256527.	4.6	59
4	Myeloablative Temozolomide Enhances CD8+ T-Cell Responses to Vaccine and Is Required for Efficacy against Brain Tumors in Mice. PLoS ONE, 2013, 8, e59082.	2.5	56
5	Novel role of hematopoietic stem cells in immunologic rejection of malignant gliomas. Oncolmmunology, 2015, 4, e994374.	4.6	41
6	Cross-talk between T Cells and Hematopoietic Stem Cells during Adoptive Cellular Therapy for Malignant Glioma. Clinical Cancer Research, 2018, 24, 3955-3966.	7.0	34
7	Linâ^'CCR2+ hematopoietic stem and progenitor cells overcome resistance to PD-1 blockade. Nature Communications, 2018, 9, 4313.	12.8	32
8	Immune Escape After Adoptive T-cell Therapy for Malignant Gliomas. Clinical Cancer Research, 2020, 26, 5689-5700.	7.0	26
9	RNA-Modified T Cells Mediate Effective Delivery of Immunomodulatory Cytokines to Brain Tumors. Molecular Therapy, 2019, 27, 837-849.	8.2	21
10	The current landscape of immunotherapy for pediatric brain tumors. Nature Cancer, 2022, 3, 11-24.	13.2	21
11	Massive clonal expansion of medulloblastoma-specific T cells during adoptive cellular therapy. Science Advances, 2019, 5, eaav9879.	10.3	17
12	Concise Review: Modulating Cancer Immunity with Hematopoietic Stem and Progenitor Cells. Stem Cells, 2019, 37, 166-175.	3.2	17
13	Myelopoiesis during Solid Cancers and Strategies for Immunotherapy. Cells, 2021, 10, 968.	4.1	7
14	Is There a Role for Immunotherapy in Central Nervous System Cancers?. Hematology/Oncology Clinics of North America, 2022, 36, 237-252.	2.2	5
15	Brain stem gliomas and current landscape. Journal of Neuro-Oncology, 2021, 151, 21-28.	2.9	2
16	IMST-48. PRIMING OF HOST T CELL MEMORY IS REQUIRED FOR THE EFFICACY OF ADOPTIVE CELL THERAPY. Neuro-Oncology, 2016, 18, vi97-vi97.	1.2	0
17	Adoptive Immunotherapy Against Brain Tumors. , 2017, , 323-335.		0
18	IMMU-65. Lin-CCR2+ HEMATOPOIETIC STEM CELLS OVERCOME RESISTANCE TO PD-1 BLOCKADE. Neuro-Oncology, 2017, 19, vi127-vi127.	1.2	0

CATHERINE FLORES

#	Article	IF	CITATIONS
19	TMIC-12. REPROGRAMMING THE BRAIN TUMOR MICROENVIRONMENT WITH HEMATOPOIETIC STEM AND PROGENITOR CELLS. Neuro-Oncology, 2017, 19, vi245-vi245.	1.2	Ο
20	IMMU-30. TCR Vb CLONAL EXPANSION PREDICTS RESPONSE TO ADOPTIVE IMMUNOTHERAPY AGAINST MEDULLOBLASTOMA. Neuro-Oncology, 2017, 19, vi119-vi119.	1.2	0
21	IMMU-17. HEMATOPOIETIC STEM CELL-DERIVED DENDRITIC CELLS REPROGRAM THE BRAIN TUMOR MICROENVIRONMENT. Neuro-Oncology, 2018, 20, i102-i102.	1.2	Ο
22	IMMU-20. HEMATOPOIETIC STEM CELLS POTENTIATE EFFICACY OF ADOPTIVE CELL THERAPY AGAINST BRAIN STEM GLIOMA. Neuro-Oncology, 2018, 20, i102-i103.	1.2	0
23	MBRS-63. CCR2+ HEMATOPOIETIC STEM CELLS OVERCOME TREATMENT RESISTANCE TO PD-1 IN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i141-i142.	1.2	0
24	Immunotherapy against Gliomas. , 0, , .		0